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Abstract

The internal migration literature typically estimates average mov-
ing costs to be several times larger than annual income. How should
economists interpret this estimate? I show that in the steady-state of
a standard model, average moving costs are proportional to the Shan-
non entropy of next period’s location minus the Shannon information
of staying in the same location. Therefore, average moving costs are
a helpful statistic about the model’s predictive power regarding future
moves but are not an estimate of the literal cost of moving. This alter-
native interpretation makes sense of the range of moving costs in the
literature.
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Many papers in economics estimate the average moving cost to be large,

often several times annual household income (Kennan and Walker, 2011; Bryan

and Morten, 2019, etc.).1 This may seem implausibly large when compared

to actual expenses associated with a move. Others have noted that these

migration costs could reflect other frictions, and that if they explicitly model

these other frictions, then estimated moving costs fall (Schmutz and Sidibé,

2019; Porcher, 2020; Heise and Porzio, 2022; Giannone, Li, Paixao and Pang,

2023).2

Jia, Molloy, Smith and Wozniak (2023), a review article in the Journal

of Economic Literature, summarizes the state of the literature as, “while un-

observed and potentially very large costs might help explain migration rates

that are low relative to the potential earnings gains from migration, different

models imply substantively different estimates of the size of these costs.”3

In this paper, I propose a different way to think about these estimated

moving costs. I show that average moving costs are a measure of the model’s

predictive power for agents’ future locations. A corollary to this interpretation

is that estimated moving costs depend on arbitrary decisions of the modeler,

such as the length of a time period or the geographic partition. This corollary

rules out a literal interpretation of moving costs and makes the debate about

the size of these costs somewhat moot.

To establish my interpretation, I back out moving costs from the observed

migration patterns in the data, using formulae implied by a standard moving

cost model. I then show algebraically that in steady-state, average moving

costs are proportional to the average Shannon entropy of next period’s loca-

tion minus the Shannon information of next period’s location being the same

1In Table 2, I show a range of large moving cost estimates in the literature.
2The literature that uses moving cost models is much larger than the papers that report

average moving costs as a main outcome. For example, the model in Caliendo, Dvorkin and
Parro (2019) would imply large moving costs, but they develop solution techniques that do
not require backing out the moving cost parameters. Another example is Schubert (2021),
which does not report the average moving cost, but does consider counterfactuals in which
the moving costs change.

3Other methodologies of uncovering migration costs also give various different results.
Koşar, Ransom and van der Klaauw (2022) uses a survey to the estimate the willingness to
pay to avoid moving, and estimates an average moving cost of $54,000.
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as the current location (Shannon, 1948). Shannon information is a measure

of how surprising an event is: the more unlikely it is to happen, the more in-

formation it contains. Shannon entropy measures expected information before

the realization of the event. So my result is that moving costs measure how

surprised the modeler will be when they find out where an individual lives next

year relative to their surprise if they find out that individual did not move.4

Based on this result, I show that estimated moving costs change depending

on the time period or the geographic partition of the model. A more novel

result is that the average costs are also sensitive to the modeler’s information

set regarding the agents. For example, knowing the birthplace of each person

leads the modeler to estimate smaller moving costs. I give examples of the ways

these modeling decisions affect average moving costs using data from the 2000

Census and the American Community Survey. Because these modeling choices

are arbitrary, I argue that interpreting moving costs literally is a mistake.

However, that does not mean moving costs are uninteresting. Given the

formulae I provide, one can interpret moving costs as a measure of the infor-

mation of the model. So comparing moving costs across models is informative

of how good those models are at predicting future locations. This alternative

interpretation makes sense of some recent results, specifically that richer mod-

els of moving—which typically incorporate more information—exhibit smaller

moving costs (Zerecero, 2021; Giannone et al., 2023; Heise and Porzio, 2022;

Porcher, 2020; Schmutz and Sidibé, 2019).

Of course, if the standard moving cost model were the true model of the

world, then moving costs could be interpreted both in the way I describe

here and also as a literal average moving cost. Therefore, my argument that

migration costs should not be taken literally implies that the standard moving

cost model is misspecified. To conclude the paper, I focus on the preference

shocks in the model and argue that these are the source of the misspecification.

Changing the way they are specified may allow future work to better estimate

4The modeler is not going to be surprised by aggregate migration flows, which they will
be able to match exactly in the data. Rather, this notion of surprise is for an individual’s
location choice, which depends on the realization of a random shock.
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average moving costs.

Besides the literature that uses moving costs in their models, which I dis-

cuss in Section 3, this paper has similarities to the literature that relates dis-

crete choice models to generalized entropy (e.g. Jose, Nau and Winkler, 2008;

Fosgerau and de Palma, 2016). These papers show an equivalence between

utility maximization and entropy minimization in discrete choice models. To

my knowledge, no one has related the estimated moving costs to entropy as

I do here.5 The key assumption that allows me to reach my interpretation of

moving costs is that I focus on a setting with a steady-state, where differences

in the baseline utilities of locations cancel out.6

1 Standard moving cost model

In this section, I use the standard moving cost model to derive an interpretable

expression for average steady-state moving costs. In this model, agents choose

their location to maximize the present value of their utility. As part of that util-

ity, they face moving costs and draw independent and identically distributed

(i.i.d.) extreme value shocks for every location in every time period.7

There is a continuum of people indexed by n that live in discrete locations

indexed by i. Time is also discrete and is indexed by t. The population of

5Porcher (2020) and Bertoli, Moraga and Guichard (2020) are perhaps the closest papers
to this one, in that they have to do with both Shannon entropy and migration. Those papers
assume rationally inattentive agents, and a typical assumption for rational inattention is
that the costs that agents have to pay is related to the Shannon entropy of the information
they acquire. This is equivalent to a discrete choice problem (Matějka and McKay, 2015).
However, there is a huge difference from this paper because this paper emphasizes the moving
costs as a measure of the modeler’s lack of information, whereas those paper emphasizes
that agents’ lack of information can look like moving costs.

6My interpretation may be helpful in the literature that estimates workers’ switching
costs across industries, as in Dix-Carneiro (2014), which estimates switching costs to be
greater than annual income.

7Some versions of the standard model, including Kennan and Walker (2011), assume the
i.i.d. extreme value shocks are part of the moving costs. When including the shocks as part
of moving costs, estimated average moving costs are negative. However, their most well-
known statistic does not include the shocks as part of the moving costs: “For the average
mover, the cost is about $312,000 (in 2010 dollars) if the payoff shocks are ignored” (Kennan
and Walker, 2011, p. 232).

4



people living in i at time t is denoted by pit. The share of people in i who move

from i to j at time t is denoted mi→j,t.
8 mit denotes the total outmigration

share from i to all locations j ̸= i at time t. When referring to steady-states,

the t index is dropped. Moving costs are bilateral between two locations, so δij

refers to the moving cost from i to j. I assume there is no cost to not moving,

i.e. δii = 0 for all i. I use the notation Ei to refer to the population-weighted

average across locations and Em to refer to the migration-weighted average. I

will be particularly interested in the average migration cost, which we define

to be δ̄ ≡ Em[δij].

In this section, I assume agents are homogeneous except for their location.

I also only consider average moving costs in the steady-state of the model. I

relax both of these assumption in Appendix A.

Agents maximize the present value of utility, represented by this value

function:

Vnt(i) = max
j

logwjt + ajt − δij +
1

µ
ϵjnt + βEVnt+1(j)

where wjt is the (real) wage, ajt is the amenities in j, δij is the moving cost

from i to j, and ϵjnt is a time-person-location i.i.d. extreme value shock. β is

the discount factor, and µ is a scale parameter, which governs the elasticity of

substitution between places.

Define vjt ≡ logwjt + ajt + βEVnt+1(j). Then the migration rate is given

by

mi→j,t =
exp(µ(vjt − δij))∑
k exp(µ(vkt − δik))

Because δii is normalized to zero, δij is given by the following expression:

δij = vjt − vit −
1

µ
logmi→j,t +

1

µ
logmi→i,t (1)

I focus on the following statistic which is often reported in papers in the

literature, the migration-weighted average moving cost in the steady-state of

8Based on this notation, mi→i,t will refer to the non-migration rate in i.
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the model:9

δ̄ ≡ Em[δij] =

∑
i,j:i ̸=j pimi→jδij∑
i,j:i ̸=j pimi→j

The main proposition relates δ̄ to measures of information about future

locations. Before stating the proposition, it is helpful to define some additional

notation.

Define J to be a discrete random variable, which is the next period’s loca-

tion. Lower-case j will refer to specific realizations of J . I use the notation

H(J |i) to refer to the Shannon entropy of J for a person currently living in i,

and the notation I(j|i) to refer to the Shannon information of the realization

of J = j given i, i.e. migrating from i to j (Shannon, 1948). Since mi→j is the

migration probability for someone living in i to move to j,

I(j|i) = − logmi→j

and

H(J |i) = −
∑
j

mi→j logmi→j

based on the mathematical definitions of Shannon information and entropy

(Shannon, 1948).

An informal way to understand Shannon information is that it measures

how surprising an event is. Since most people do not move, the event of not

moving is unsurprising, and the Shannon information of not moving is small.

Shannon entropy measures the expected Shannon information. So if it is very

hard to predict where people will live next period, then the Shannon entropy

will be large.

Another way to think about Shannon entropy is that Shannon entropy is

approximately proportional to the number of “yes or no” questions one would

have to ask in order to acquire the information, i.e. the number of bits the

9This summary statistic is not universally reported in papers that estimate moving costs,
but it is fairly common (see Table 2 for example). Typically, the averages are migration-
weighted to down-weight pairs of locations with little migration and high moving costs.
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information contains.10 So H(J |i) is proportional to the bits of information

needed to communicate where a person in i will live next period.

Proposition 1. In the steady-state of the standard moving cost model, the

average moving cost is the average Shannon entropy of next period’s location

minus the Shannon information of not moving, all divided by the average mov-

ing rate times the migration elasticity. In math,

δ̄ =
1

Eimi

1

µ
Ei[H(J |i)− I(i|i)] (2)

Proof: Plugging in (1) to the definition of δ̄,

δ̄ =
1

1−
∑

i pimi→i

∑
i.j:i ̸=j

pimi→j

(
− 1

µ
logmi→j +

1

µ
logmi→i

)

Note that in steady-state, the vit and the vjt’s all cancel out because
∑

k pkmk→i =∑
k pimi→k. The steady-state assumption is a key assumption that allows my

interpretation and is why my results do not extend to more-general discrete

choice models. Rearranging,11

δ̄ =
1

1−
∑

i pimi→i

1

µ

∑
i

pi

(
−
∑
j

[mi→j logmi→j] + logmi→i

)

Recall that I defined mi ≡
∑

j:j ̸=i mi→j to be the total outmigration from i.

Using the definitions of Shannon entropy and Shannon information,

δ̄ =
1

Eimi

1

µ
Ei[H(J |i)− I(i|i)]

Proposition 1 establishes that the estimated average moving cost is a mea-

10This is an approximation because Shannon entropy is a continuous measure. It can be
scaled by log 2 to convert the units of Shannon entropy into bits.

11To derive this expression from the one above, note that
∑

j ̸=i mi→j logmi→i = (1 −
mi→i) logmi→i. The −mi→i logmi→i term is then moved into the other term so that the
sum is over all j, and not just j ̸= i. This leaves the logmi→i term outside the summation.
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sure of information: it is proportional to the expected information of finding

out where an individual i will live next period minus the information of finding

out that the individual did not move.

In addition to Proposition 1, I can alternatively relate the average moving

cost to the Shannon entropy of future locations conditional on migrating.

Define an event �i to be when the random variable J takes on any realization

that is not i, i.e. a move. I will use the notation H(J |i → �i) to be the

conditional Shannon entropy of next period’s location given that the agent

moves away from i.

Proposition 2. In the steady-state of the standard moving cost model, average

moving costs are the migration-weighted average Shannon entropy of next pe-

riod’s location conditional on moving plus the Shannon information of moving

minus the Shannon information of not moving, all divided by the migration

elasticity. In math,

δ̄ =
1

µ
Em [H(J |i → �i) + I(�i|i)− I(i|i)] (3)

Proof : Define m∗
i→j =

mi→j

mi
to be the probability of moving to j, condi-

tional on moving at all. Then, we can algebraically rearrange the expression

for average moving costs as:

δ̄ =
1∑

i pimi

1

µ

∑
i

pimi

(
−
∑
j ̸=i

[m∗
i→j logm

∗
i→j]− logmi + log(1−mi)

)

So

δ̄ =
1

µ
Em [H(J |i → �i) + I(�i|i)− I(i|i)]

This formulation is helpful compared to Proposition 1 because it separates

out the Shannon entropy conditional on moving from the information involved

in moving or not.12

12I can extend Proposition 2 to ϵ shocks that are nested logit as in Monras (2020), where
there is one elasticity for choosing whether to move at all and one elasticity for choosing
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The two key assumptions for both propositions are that the model is in

steady-state and that the agents are homogenous but for their initial location.

In Appendix A, I show that if either of these assumptions is relaxed, then the

expressions for δ̄ are very similar to the equations (2) and (3), but with an

additional term that represents the average gain from migration net of moving

costs and idiosynchratic shocks.13

These propositions have three important implications for interpreting mi-

gration costs, which I cover in the following three corollaries.

Corollary 1. Holding the migration elasticity constant, estimated average

moving costs depend on the modeler’s choice of length of the time period.

One way to see this corollary is from the formula in Proposition 2.14 Over

short time horizons, the Shannon entropy conditional on moving, H(J |i → �i),

does not vary much. However, migration rates are smaller for shorter time

horizons. So based on Proposition 2, average moving costs will vary with the

time period chosen as I(�i|i) − I(i|i) = log 1−mi

mi
increases when time horizons

are short. In fact, as time horizons get arbitrarily short, estimated average

moving costs get arbitrarily large.

Corollary 2. Holding the migration elasticity constant, estimated average

moving costs depend on the modeler’s choice of geographic partition.

which location to move to. The formula becomes

δ̄ = Em

[
1

µ
H(J |i → �i) +

1

λ
(I(�i|i)− I(i|i))

]
where µ is the migration elasticity across destination locations and λ is the migration elas-
ticity of moving at all. This is intuitive given that the I terms are about the information
of whether to move at all, and the H term is about the information conditional on moving.
See Appendix B for details.

13I can quantify this term when just the steady-state assumption is relaxed. Using the
same data from Section 2, this additional term is quantitatively negligible, about 0.4 percent
the size of the terms in equations (2) or (3). Intuitively, one of the reasons this term is so
small is because gross migration is much larger than net migration (Jia et al., 2023), so the
data is not too far away from steady-state. See Appendix A for details.

14Alternative intuition for this corollary can be seen directly in equation (1). The mi-
gration rate mi→j is increasing in the time horizon, and the non-migration rate mi→i is
decreasing in the time horizon, so if vit − vjt is not changing with the time horizon, esti-
mated migration costs must decline.
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The Shannon entropy of next period’s location depends on how the mod-

eler partitions geography.15 Generally, the more locations there are, the harder

it is to predict exactly which one any given person will end up in. Therefore,

one would expect that Shannon entropy would increase in the number of loca-

tions.16 Mechanically, migration rates also increase in the number of locations.

As far as I know, there is no way to order geographies such that estimated

migration costs must increase or decrease, but in the empirical results, I show

that the Shannon entropy change dominates the change in the information of

not moving when I apply it to states versus migration public use microdata

areas (MIGPUMAs). Certainly, there is no reason to expect the change in

Shannon entropy and the change in migration rates to cancel out.

Consider two silly examples to show that moving costs can be estimated to

be very large or very small depending on the partition. We will use Proposition

2 for these examples. In the first case, consider partitioning every house into

its own geography. In the 2000 Census, 43 percent of people moved houses in

the previous 5 years. The Shannon entropy conditional on moving is enormous

because it is almost impossible to predict the exact house that anyone would

live in. So based on equation (3), we would have an enormous number plus

log((1− 0.43)/0.43). Just to put a number on it, we can assume that modeler

can assign no individual house a probability of being chosen of greater than

0.1 percent. Then a lower bound is

δ̄ =
1

µ
Em[H(J |i → �i)− I(�i|i)− I(i|i)] ≤ 1

µ

(
− log

1

1000
+ log

1− 0.43

0.43

)
≈ 7.2

µ

Alternatively, we could partition the United States into houses with an

even-numbered address and ones with an odd-numbered address. If we assume

it is random which type of house you move into, we would expect 21.5 percent

15Again, equation (1) gives some hints at this proposition because if we divide a region
into two regions, the migration rate to either individual region will be less than to the original
region. The model estimates higher moving costs to rationalize these lower migration rates.
This point is acknowledged in Kennan and Walker (2011) but the quantitative implications
are not explored.

16This may not be true in all cases, if the more precise location is sufficiently informative
of future locations.
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of the population to “move regions.” Conditional on “moving regions,” the

Shannon entropy is zero. So the estimated average moving cost is

δ̄ =
1

µ
Em[H(J |i → �i)− I(�i|i)− I(i|i)] = 1

µ

(
0 + log

1− 0.215

0.215

)
≈ 1.3

µ

Stepping back from the model, this partition should not matter. The “true”

average cost of moving from an even-numbered house to an odd-numbered

house should not be different than the “true” average cost of moving between

any two houses. Yet, how we partitioned the geography changed the estimated

average cost of moving by a factor of more than 5.

Corollary 3. Holding the migration elasticity constant, estimated average

moving costs depend on the modeler’s information set.

Suppose the modeler knew some immutable characteristic of individuals, s,

such as their race or their birthplace. If they estimate separate moving costs

by this characteristic, then equation (2) becomes17

δ̄s =
1

Eismis

1

µ
Eis [H(J |i, s)− I(i|i, s)] (4)

Shannon entropy is convex, and Shannon information is concave, so by Jensen’s

inequality, Eis[H(J |i, s)− I(i|i, s)] ≤ EiH(J |i)− I(i|i)]. Since Eismis = Eimi,

then δ̄s is weakly smaller that δ̄. If s provides any information about the next

periods’ location, then the inequality is strict.

This expression also holds for some characteristics that are not immutable.

For example, if the modeler modeled the decision making process in two stages

where, first, each person chooses a consideration set, and second, compares the

utilities available in each, s could be the consideration set.18 In this setup, I can

still derive formula (4).19 So in a model with consideration sets, the modeler

will estimate lower moving costs than in a model without consideration sets.

17See Appendix A.3 for the derivation.
18As this example illustrates, the characteristic s does not need to be measured in the

data. It can be something the modeler can only see with the model.
19For the derivation, see Appendix A.4.
While immutable characteristics and consideration sets lead to equation (4), this is not
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In the limit, if the modeler knew characteristics that could perfectly predict

everyone’s next period location (e.g. s was a sufficient statistic for j), then

moving costs would be estimated to be negative infinity. This is because not

moving, I(i|i, s), would be an infinitely large surprise for someone they could

perfectly predict was moving.

All three corollaries assumed that the migration elasticity was held con-

stant, so it worth discussing whether that is a reasonable assumption when

changing the length of a time period, the geography, or the modeler’s infor-

mation set. To estimate this elasticity, a modeler typically uses the following

equilibrium relationship. They might use an exogenous change in a location’s

utility as an instrument to estimate µ:

d logmi→j − d logmi→i = µ(dvi − dvj) (5)

Importantly, this relationship does not depend that much on how time

periods, geographies, or demographic groups are aggregated. I discuss this in

Appendix C.

2 Moving cost calibrations with data

In this section, I illustrate the corollaries from the previous section using real

world data. In particular, I estimate the average moving costs using equation

(2) with data from the Census and the American Community Survey (ACS) in

2000 (Ruggles, Flood, Sobek, Brockman, Cooper, Richards and Schouweiler,

2023).20 For each state-pair, I calculate mi→j as the share of people who lived

in state i that moved to state j, either from 1995 to 2000 in the Census, or

true of all possible characteristics. In Appendix A, I add a general characteristic, which
affects migration costs and location utilities. I show that migration costs are the sum of two
terms: one which is the difference between the Shannon entropy of next period’s location
and the Shannon information of not moving, and one that represents the average gain from
moving net of migration costs and idiosynchratic shocks. In these two examples, that second
term is zero.

20This is the only year, to my knowledge, in which similar surveys asked about the 1-year
migration rate (the ACS) and the 5-year migration rate (the Census).
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Table 1: Estimated Moving Costs for Different Models

(1) (2) (3) (4)
Shannon Migration Estimated Cost
Entropy Rate Moving Cost in $1000’s

1 year, states 0.182 0.024 6.692 315
(0.0017) (0.0002) (0.0138) (0.65)

5 year, states 0.561 0.085 5.585 262
(0.0005) (0.0001) (0.0014) (0.07)

5 year, states (modeler knows birthplace) 0.512 0.085 4.981 234
(0.0004) (0.0001) (0.0018) (0.08)

5 year, MIGPUMAs 1.231 0.173 5.983 281
(0.0007) (0.0001) (0.0014) (0.07)

Notes: All datasets are from 2000. 1 year migration uses migration measured over 1 year
from the ACS. 5 year migration uses migration measured over 5 years from the Census.
The unit of geography is a state or a MIGPUMA, a subset of a state with at least 100,000
people in it. Birthplace is an indicator variable either for the state of birth or for being
from anywhere outside the 51 U.S. states. The median household income in 2000 (for
people also living in the U.S. in 1995) was $47,000, so column (4) is column (3) times 47.
Standard errors, in parentheses, are bootstrapped with 100 replications.
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from 1999 to 2000 in the ACS. I also calculate mi→j,b, where I calculate the

probability of moving from i to j given a birthplace b. And I also calculate

mi→j where i and j are MIGPUMAs instead of states.21

Kennan and Walker (2011) and many subsequent papers express moving

costs in dollar terms. Since wages enter utility in logs, one can interpret these

average moving costs as a percent of wages.22 Therefore, one might think of

moving costs as a measure of the expected Shannon information minus the

Shannon information of not moving, where each bit of information “costs”
w

µ log 2
dollars per migrant.23

I then calibrate the average moving costs according to equation (2), assum-

ing µ = 1. In the literature, there is little consensus on what µ is, and some

good arguments that typical methods have not estimated it well (Borusyak,

Dix-Carneiro and Kovak, 2022), so I use µ = 1 not because I believe that

but because it is easy for the reader to scale the moving costs by whatever µ

they prefer.24 The comparisons of results are intuitive. In the 1 year calibra-

tion, I estimate moving costs of 6.7 log points, or when converted to dollars,

$315,000. This is the same order of magnitude as Kennan and Walker (2011),

who estimated moving costs of $312,000 (p. 232).25

In the 5 year calibration, I estimate smaller moving costs: 5.6 log points,

or $262,000.26 This is because at the 5-year horizon, an individual choosing

21MIGPUMA stands for Migration Public Use Microdata Area and is a within-state
region with at least 100,000 people.

22Kennan and Walker (2011) actually expresses utility in dollar terms directly, so there
is no need for this adjustment. However, much of the subsequent literature does express
wages in logs.

23When we change the time period to five years, the most natural change to the model is
to change logwjt in the value function to 5 logwjt to minimize changes to the level of utility
or the marginal utility. In this case, the moving cost can still be interpreted as a percent of
annual wages.

24Borusyak et al. (2022) makes the point that regressing the change in population on labor
demand shocks—even well-identified labor demand shocks—does not identify µ because the
shocks are correlated across space and affect both origin and destination locations.

25The fact that these are only $3000 different is mostly a coincidence. Kennan and Walker
(2011) is using 2010 dollars, while I use 2000 dollars, and the model in Kennan and Walker
(2011) is much richer. They also explicitly model a semi-elasticity of migration because they
have linear utility in consumption.

26This difference is because of the different time horizons, not the different datasets. I
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to move is less suprising than at the 1-year horizon.

If the modeler knows the birthplace, the entropy decreases since birthplace

is a helpful predictor of future location choices. Compared to the 5 year

calibration where the modeler does not know birthplace, the moving cost is

even lower: 5.0 log points ($234,000). This is consistent with Zerecero (2021).

One implication is that if the true model of the world was the model de-

scribed in Section 1 and if moving costs and utility depended on birthplace,

but the modeler incorrectly estimates the model without accounting for birth-

place, then they would estimate moving costs that are about 10 percent too

high.

Finally, if I use MIGPUMAs instead of states, it is much harder to predict

future locations, since MIGPUMAs are a finer geography. The moving costs

increase by about 0.4 when I use MIGPUMAs instead of states, to 6.0 log

points ($281,000).
This means if the “true” model involved drawing an i.i.d. shock for every

PUMA, but the modeler mistakenly assumed the i.i.d. draws were for every

state, they would underestimate moving costs by a bit less than 10 percent.27

3 Discussion

3.1 How should moving costs be interpreted?

Is there one of these moving costs that is more “correct” than the other ones?

No. The differences depend on arbitrary choices made by the modeler. Natural

choices (MIGPUMAs vs. states, 1-year vs. 5-year, and whether to include

information on birthplace) lead to large differences in estimated migration

costs, of about half a year of income or more. As I showed in Section 1, if

can estimate the standard one-year model using the data from the one-year migration in
the ACS, calculate the five-year migration rates from that model, and then estimate the
implied moving costs in a five-year model using the five-year simulated data. I estimate a
moving cost of 5.110 log points, which is even lower than the number in Table 1.

27Note that they underestimate average moving costs even though their average is over
only interstate moves, and more than half of the moves in average of the “true” average
moving cost are within-state moves.
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the modeler makes even less natural assumptions, the migration costs could

diverge to infinity or negative infinity.

Because these arbitrary decisions affect the estimated moving cost, it there-

fore cannot be a reasonable measure of the actual cost of moving.

So how should a reader interpret reported moving costs in an economics

paper? I propose that they may want to compare the average moving costs

to other papers or other model specifications, as I do in Table 2.28 These

comparisons tell the reader how much information the model has. The larger

the average moving cost, the less the model is able to predict where people

will be in the next period, relative to the information of staying in place.

Table 2 is roughly ordered by the size of the moving costs, from largest to

smallest. In column (4), where the modeler’s information is listed, the amount

of things that the modeler knows increases as the moving cost decreases. Of

course, the geographies, time periods, and settings are changing as well, so

that will also affect the moving costs, but the information column seems to be

a factor.

28To include a paper in this table, I required the paper to report an average moving
cost in some sort of interpretable units and to use extreme value shocks. Papers such as
Bishop (2012) and Oswald (2019) report a moving cost function and seem to have moving
costs in the same ballpark as Kennan and Walker (2011), but do not report average costs.
Bartik and Rinz (2018) reports a moving cost of $683,000, but this is not the average of
all movers; rather it is the average cost for a 500 mile move. Similarly, Bayer and Juessen
(2012) also does not feature extreme value shocks, so the moving costs are not exactly a
measure of information. Nonetheless, Bayer and Juessen (2012) does estimate substantially
smaller moving costs ($34,248), likely because they incorporate information about migrants
persistent preferences over locations.
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We can also compare estimated moving costs within the same paper. Zere-

cero (2021) estimates a model that includes a bias for living in one’s birthplace

and finds that it features smaller moving costs than a model that does not.

This reflects an increase in the information the modeler has to predict future

locations. The Shannon entropy, i.e. the average amount the modeler is sur-

prised by any particular location choice, is smaller when they already know

the person’s birthplace. While it is a less direct comparison, Giannone et

al. (2023) compares their estimated migration costs to the migration costs in

Kennan and Walker (2011) and argues their new costs are lower because they

include wealth in their model. This claim is consistent with wealth being an

important piece of information about future location choices and the likelihood

of moving.

Other models also reduce the estimated moving cost by including features

that help predict migration. For example, Heise and Porzio (2022) consid-

ers job search, where migration is more likely to occur conditional on a job

offer, and Porcher (2020) considers rational inattention. Through the lens

of my interpretation, prior to the decision to move, the modeler learns some

information—either the agent gets a job offer (Heise and Porzio, 2022) or they

pick their optimal signal at a cost (Porcher, 2020). From the perspective of

the modeler, this information helps predict the agents’ future locations, low-

ering the Shannon entropy. Consistent with my interpretation, the estimated

moving costs in these models are lower.29 Porcher (2020) estimates a model

without his information frictions and finds the migration costs are 40 percent

higher.

29In Heise and Porzio (2022), I cannot directly apply the formulae in equations (2) and
(3) because these models feature additional state variables for the agents. This means that
the vit − vjt term from equation (1) will not cancel out. The correct formulae for when
there are state variables can be found in Appendix A, and these formulae include an addi-
tional term that represents the average utility gain from migration, net of moving costs and
idiosynchratic shocks. I expect this additional term would be positive when migration also
coincides with a job offer as in Heise and Porzio (2022). So this would actually lead to higher
moving costs if there were no change in the modeler’s information. Therefore, the decline
in migration costs actually understates the improvement in the modeler’s information.
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3.2 The role of random utility shocks

One assumption of the standard moving cost model—which is key to my

interpretation—is that the random utility shocks are i.i.d. extreme value.

Of course, shocks like these are necessary to rationalize how otherwise identi-

cal agents make different choices. However, the functional form and especially

the i.i.d. nature of the shocks leads to my interpretation of the moving costs

as a measure of information. It also rules out taking the moving costs literally

because moving costs depend on choices of the modeler about time and space.

So to make progress on estimating model-based moving costs that correspond

to literal moving costs, it is necessary to modify or relax this assumption.30

To better understand the role of the i.i.d. assumption, suppose that the

standard moving cost model was true, but that the modeler assumes that

people draw shocks at the wrong frequency, e.g. every year rather than every

five years. Then the researcher incorrectly assumes that in a five-year period,

each agent has five draws in which they could get a high enough shock in order

to move, whereas in truth, they only get one draw. When moving is rare, this

means that for the same migration costs, the researcher would assume about

five times more people move using the one-year model than the five-year model.

So to match the data, they would infer higher moving costs for the five year

model.31

A similar argument applies to subgeographies: if a modeler assumes agents

get an independent shock for every MIGPUMA, then they will have to assume

higher moving costs than if they assume one shock for the whole state in order

to match the same amount of migration.32

30Not all relaxations of this assumption will solve the problem. In appendix B, I show that
shocks that generate a nested logit (as in Monras, 2020) still lead to a similar interpretation
as in Proposition 2. However, the correlation of shocks in such a model is limited compared
to what I propose in this section, e.g. there is no correlation of shocks across time.

31In fact, as mentioned in footnote 26, in a simulation based on estimating moving costs
using the 1-year ACS data and simulating the model for five years, if the true model is an
i.i.d. draw every year, but the modeler incorrectly assumes a draw every five years, the
estimated average moving costs will be 5.110, whereas the “true” average moving costs are
6.692.

32This point is acknowledged in Kennan and Walker (2011). However, they ignore it
because the choice of whether to consider more preference shocks for populous states or
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One way to relax this key assumption would be to explicitly model all the

heterogeneity, as in Schmutz and Sidibé (2019), where randomness comes from

the wage in a job offer that the worker receives, and can be calibrated from

data. This approach is quite demanding of the model, as it has to rationalize

all the reasons people make different decisions about where to live.

Another approach is to maintain random utility, but to assume individ-

ual preferences are correlated across time and space as in Howard and Shao

(2022).33,34 The previous argument would break down because the maximum

of several correlated random variables is not that different than the average,

when the correlation is sufficiently high. A model with these correlations would

estimate moving costs that are not as sensitive to the length of time periods

or the size of geographies.

Allowing these correlations could also make the model less dependent on

the information set of the modeler. For example, knowing the birthplace of an

agent means that the modeler is able to predict that the agent will have a larger

preference for living near their birthplace, in all time periods. Effectively, the

birthplace is inducing a spatial and temporal correlation in the agents’ match-

specific preferences. If the correlation structure imposed by the modeler were

rich enough, it might not matter if the modeler actually knew the agents’

birthplaces or not.

lower moving costs does not affect their results on income, which was their main result.
33In Howard and Shao (2022), there are no moving costs at all, and yet the model matches

the data fairly well. This is suggestive that such an approach might estimate lower moving
costs.

34The standard moving cost model can be thought of as having a specific correlation
structure: within-period and within-geography, the correlation of the shocks is 1; and across-
periods and across-geographies, the correlation is 0. When you change the length of the
period or the size of the geography, the correlation structure changes a lot.
However, in an alternative model like the SPACE model from Howard and Shao (2022),

where the shocks are correlated across time and space, then the discrete geographies and
time periods can be thought of as an approximation of a continuous model, and so the
choice of geographies and time periods will not change the correlation structure that much,
provided it is short- and dense-enough to be a good approximation.
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4 Conclusion

Many people think of moving costs as a black box, since it is supposed to

be a stand-in for many things that a modeler might not observe: information

frictions, job and housing search, psychological costs of relocating, and, of

course, the actual monetary costs of moving. In this paper, I provide an

alternative but related interpretation: average moving costs measure the size

of a black box; moving costs are closely related to how little information is in

the model about future locations.
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A Extension to the model

In this appendix, I relax two big assumptions that I made in the main text:

first, that agents are homogeneous except for their location; and second, that

the model is in steady-state.

I derive a general formula for average moving costs, that is the sum of two

terms. The first term is the same as in the main text of the paper. The second

term is the average change in the continuation value v for migrants, net of

migration costs and idiosyncratic shocks.

I then consider a few special cases that are referenced in the main text.

First, I consider the case where I drop the steady-state assumption but main-

tain the homogeneity assumption. I show that this new term is quantitatively

small under reasonable assumptions on the symmetry of moving costs. Second,

I consider the case where I maintain the steady-state assumption, but allow for

the homogeneity assumption to be relaxed based on permanent characteristics

of the agents. Finally, I consider the case with the steady-state assumption,

but drop the homogeneity assumption to allow for consideration sets.

A.1 More general setup

Consider an extension to the standard moving cost model, in which agents have

a state s that affects their payoffs and moving costs. s is multidimensional,

and it is a function of both the previous s, the location choice i, and a random

variable X. This is a general setup so that s could include age, the history of

past locations, job status and wages, etc.

With the state variable, utility is now represented by this value function:

Vnt(j, s) = max
i

logwit(s) + ait(s)− δji(s) +
1

µ
ϵint + βEVnt+1(i, s

′(s, i,X))

where wit(s) is the (real) wage, ait(s) is the amenities in i, δji(s) is the moving

cost from j to i, and ϵint is an i.i.d. extreme value shock. µ is a scale parameter,

which governs the elasticity of substitution between places.

Define vit(j, s) ≡ logwit(s)+ait(s)+βEVnt+1(i, s
′(s, i,X)). Then migration
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is given by

mj→i,t(s) =
exp(µ(vit(j, s)− δji(s)))∑
k exp(µ(vkt(j, s)− δjk(s)))

Again, I normalize δii(s) = 0, so the δji(s) is then

δji(s) = vit(j, s)− vjt(j, s)−
1

µ
logmj→i,t(s) +

1

µ
logmj→j,t(s)

Consider the migration-weighted average moving cost in the steady-state

of the model:

δ̄s ≡
∑

s,i,j:i ̸=j pi(s)mi→j(s)δij(s)∑
s,i,j:i ̸=j pi(s)mi→j(s)

=
1

1−
∑

i,s pi(s)mi→i(s)

∑
s,i.j:i ̸=j

pi(s)mi→j,t(s)

(
− 1

µ
logmi→j,t(s) +

1

µ
logmi→i,t(s)

)
+

1∑
s,i,j:i ̸=j pi(s)mi→j(s)

∑
s,i,j:i ̸=j

pi(s)mi→j,t(s)(vit(j, s)− vjt(j, s))

Rearranging,35

δ̄s =
1

1−
∑

i pi(s)mi→i(s)

1

µ

∑
i

pi(s)

(
−
∑
j

[mi→j(s) logmi→j(s)] + logmi→i(s)

)
+ Em

ijs(vit(j, s)− vjt(j, s))

Define mi ≡
∑

j:j ̸=i mi→j to be the total outmigration from i. Then

δ̄s =
1

Eismi(s)

1

µ
Eis [H(J |i, s)− I(i|i, s)] + Em

s [vit(j, s)− vjt(j, s)] (6)

The first term is the same as before, except now the entropy and the informa-

tion are both conditional on s. The δ is averaged across all s. The second term

is the average gain in utility for migrants, net of moving costs and idiosyn-

chratic shocks. The expectation Em
s is the average, weighted by the number

of migrants of type s moving from i to j.

35Note that
∑

j ̸=i mi→j = 1−mi→i.
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In this more general setup, average moving costs are the sum of two compo-

nents: the first is still a measure of the Shannon entropy from the perspective

of the modeler minus the Shannon information of not-moving; and the second

is the average gains from migration.

In the main text, the second term drops out because there are not average

gains to migration. This is because the continuation value is the same for

everyone, conditional on location, and I assumed the model was in steady-

state, which meant that the same number of people moved into and out of

each location.

A.2 Special Case: Not in steady state

If I drop the steady-state assumption, but assume there are no additional s

states, then (6) becomes

δ̄ =
1

Eimi

1

µ
Ei [H(J |i)− I(i|i)] + Em[vit(j)− vjt(j)] (7)

The first term is the same as in the main part of the paper, and the second

term is the additional utility gains from the fact that there is net migration

to better places. The second term is likely to be positive, and it is small when

differences in utility across space are small or when net migration is small.

In fact, I can numerically show that they are small, using the same data

that I used in Section 2. I assume average moving costs into and out of every

location are equal: ∑
mi→jδij =

∑
mi→jδji

With this assumption, I can put a number on these average gains from mi-

gration net of moving costs and the idiosynchratic utility.36 This assumption

allows me to set up a system of two equations and two unknowns relating∑
j ̸=i mi→j(vit − vjt) and

∑
j ̸=i mi→jδij, based on equation (1). Solving, the

36I cannot assume δij = δji for every i and j because it overidentifies the data. With
states, there would be 51 × 51 migration data points, but only 51 vi’s and 51×50

2 δij ’s to
identify them with.

27



average gain from migration is given by:

1

µ

∑
i,j,i̸=j

pimi→j log

(
mi→j

mj→i

mj→j

mi→i

)

In the data, and with µ = 1, this number is about 0.022. This is about 0.4

percent of the size of the information term (see Table 1). So at least in the

standard model, the steady-state assumption was not quantitatively affecting

my results.

A.3 Special Case: s is immutable

Another special case of the more general result is if s is immutable: i.e. s′ = s,

and I maintain the steady-state assumption. s being immutable means I can

rewrite vit(j, s) ≡ vits, i.e. the continuation value does not depend on j. And

because the model is in steady-state, the number of people of type s moving

into i is cancelled out by the number of people of type s moving out of i. So

the average gains from migration term drops out:

δ̄ =
1

Eismi(s)

1

µ
Eis [H(J |i, s)− I(i|i, s)]

This leaves us with the main result again, but where the Shannon entropy and

the Shannon information are conditional on s.

A.4 s and j do not affect vit

Another straightforward example is if vit(j, s) does not depend on j or s, e.g. s

governs the contemporaneous moving costs, but nothing else.37 This could be

the case if, at the start of each period, each agent drew a random consideration

set, which is represented by s. But once they moved to the new region, they

looked just like anyone else there.

37As in the last example, I maintain the steady-state assumption here.
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Under this assumption, we again get the same equation:

δ̄ =
1

Eismi(s)

1

µ
Eis [H(J |i, s)− I(i|i, s)]

So the Shannon entropy and Shannon information depend on s, but the result

is otherwise the same.

In general, however, adding the state to the model leads to the possibility

that there are average gains to in utility for migrants. Examples of s that

would matter are if s equals the history of past locations, age, or employment

status. I would expect these to be positive because migrants will tend to move

to places with higher utility for themselves.
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B Monras (2020) extension

Consider the Monras (2020) model, which features a nested logit formulation,

so that the elasticity to move at all is different than the elasticity of where to

move to. I will denote the elasticity to move at all with λ and the elasticity

of where to move with µ. The migration probabilities in his model are given

as:38

logmi→j =µ(vj − δij)− µvim + λvim − log (exp(λvi) + exp(λvim)) (8)

logmi→i =λvi − log (exp(λvi) + exp(λvim))) (9)

log(1−mi→i) =λvim − log (exp(λvi) + exp(λvim))) (10)

where vim = 1
µ
log
∑

k ̸=i exp(µ(vk − δik)). The first step is to solve for δ̄ in

terms of observed migration, as in the main text. Subtracting (9) from (8)

gives:

logmi→j − logmi→i = µvj − µδij − λvi + (λ− µ)vim (11)

Subtracting (9) from (10) gives:

vim = vi +
1

λ
log(1−mi→i)−

1

λ
logmi→i (12)

Plugging in (12) to (11) gives:

logmi→j−logmi→i = µvj−µδij−µvi+(λ−µ)

(
1

λ
log(1−mi→i)−

1

λ
logmi→i

)
Solving for δij,

δij = vj − vi −
1

µ
logmi→j +

(
1

µ
− 1

λ

)
log(1−mi→i) +

1

λ
logmi→i

38In the main text, Monras (2020) does not include moving costs to simplify the algebra,
but they are straightforward to include as I do here.
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So the average moving cost is

δ̄ =
1

Eimi

∑
i ̸=j

pimi→j

(
vj − vi −

1

µ
logmi→j +

(
1

µ
− 1

λ

)
log(1−mi→i) +

1

λ
logmi→i

)

In steady-state, the vi and vj all cancel out, as in the main text:

δ̄ =
1

Eimi

∑
i ̸=j

pimi→j

(
− 1

µ
logmi→j +

(
1

µ
− 1

λ

)
log(1−mi→i) +

1

λ
logmi→i

)

Adding and subtracting 1
µ
logmi→i,

δ̄ =
1

Eimi

∑
i ̸=j

pimi→j

(
− 1

µ
logmi→j +

1

µ
logmi→i +

(
1

µ
− 1

λ

)
(log(1−mi→i)− logmi→i)

)

The first two terms inside the parentheses are identical to the standard model.

So we can plug in the result from the Proposition 2:

δ̄ =
1

µ
Em [H(J |i → �i) + (I(�i|i)− I(i|i))]− Em

[(
1

µ
− 1

λ

)
(I(�i|i)− I(i|i))

]
Which simplies to

δ̄ = Em

[
1

µ
H(J |i → �i) +

1

λ
(I(�i|i)− I(i|i))

]
This has a very similar formulation to Proposition 2. But instead of multi-

plying the Shannon information terms by 1
µ
, they are multiplied by 1

λ
. Intu-

itively, this makes sense because µ is the elasticity conditional on migrating,

and H(J |i → �i) is the Shannon entropy conditional on migrating. Similarly,

λ is the elasticity of moving at all and I(�i|i) − I(i|i) is the relative Shannon

information of moving to not moving.

31



C Estimating µ

In this section, we consider whether equation (5) would change very much

depending on the aggregation of time periods, geographies, or demographics.

First, let us consider changing the length of a time period. Define mt
i→j to

be the migration rate over time horizon t. In practice, mt
i→j is a multiplicative

function of a baseline migration rate and a function of the time horizon being

considered, in both standard models and in the data. In particular, the stan-

dard model implies mt
i→j ≈ m1

i→jt when moving costs are sufficiently large,

and in the data, mt
i→j ≈ m1

i→j

√
t (Howard and Shao, 2022).39 Because of the

multiplicative property,

d logmt
i→j ≈ d logm1

i→j

This implies equation (5) is approximately time horizon invariant. Based

on equation (5), we should also be cognizant of d logmi→i, but proportional

changes in the non-migration rate are tiny compared to changes in migration

rates.

Second, we can consider aggregating to a larger geography. Suppose we

combine two locations j and k into ℓ. If previously, equation (5) held for j

and k, then we can add them together based on initial migration levels:

mi→j

mi→j +mi→k

d logmi→j +
mi→k

mi→j +mi→k

d logmi→k − d logmi→i

= µ

(
mi→j

mi→j +mi→k

dvj +
mi→j

mi→j +mi→k

dvk − dvi

)
The left-hand side is a log-linear approximation of d logmi→ℓ. Assume that

dvℓ ≈
mi→j

mi→j +mi→k

dvj +
mi→j

mi→j +mi→k

dvk

This assumption will hold if the wage increases are similar in j and k or if the

39The fact that the data and the standard model do not match is one of the main
contributions of Howard and Shao (2022), but is immaterial for this argument as long as
some function of t can be pulled out.
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population weights and the migration weights are similar. Then the previous

expression reduces to

d logmi→ℓ − d logmi→i ≈ µ(dvℓ − dvi)

In other words, we still expect equation (5) to hold approximately.

Finally, we can consider aggregating across demographics. Assume that

equation (5) held for two groups s and r, which we then aggregate.

γs(d logmi→j,s − d logmi→i,s) + γr(d logmi→j,r − d logmi→i,r)

= µ (γs(dvj,s − dvi,s) + γr(dvj,r − dvi,r))

where γs =
pi,smi→j,s

pi,smi→j,s+pi,rmi→j,r
and γr =

pi,rmi→j,r

pi,smi→j,s+pi,rmi→j,r
, i.e. weights corre-

sponding to the amount of migration from each group.

The left-hand side is again a log-linear approximation of the total change

in migration across r and s, so as long as

dvℓ ≈ γsdvℓ,s + γrdvℓ,r

for ℓ = i, j then the previous expression reduces to

d logmi→j − d logmi→i ≈ µ(dvj − dvi)

Hence, we should not expect the estimation of µ to vary with geographic

partition, time horizon, or demographics.
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