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We document a new empirical regularity: the t-year interstate migration rate, defined

as the share of people living in a different state than they did t years ago, scales quite

closely with the square root of t. This new fact is a puzzle for the standard moving cost

model that is widely used in the literature, which typically implies a linear relationship.

The main contribution of our paper is a simple but novel model that can match the new

fact by assuming that individual-location-match-specific utility is correlated across time

and space. The model we propose features Spatially and Persistently Auto-Correlated

Epsilons, so we call it the “SPACE” model.1 Unlike the standard model, which under-

stands low migration rates as the result of large moving costs, our model rationalizes low

migration rates as a result of the match-specific determinants of location being highly per-

sistent. Our model is able to replicate bilateral one-year migration flows from the data,

maintaining the flexibility of the standard models, while also featuring more realistic

dynamics.

With the new model in hand, we compare the implications of the new model to the

standard moving cost model and find that, for many but not all questions, the models

have different answers. These findings reshape our understanding of the causes of low

migration, the dynamics of population adjustment, the long-run population elasticities to

local changes, and the changes in implied utilities across space in recent years.

The first part of our paper documents the new square root fact using data from the

Gies Consumer Credit Panel, a 15-year panel recording the location of approximately 1

percent of all Americans with a credit report every year. While the square root fact is

related to some other well-known facts, such that return migration is common (Kennan

and Walker, 2011), we show that the
√
t fact is not a simple result of return migration,

but captures richer dynamics. We also show that this fact does not naturally occur in

standard moving cost models. In those models, migration is a Markov process, which

combined with low rates of migration, implies a linear relationship with t.2

We then build a model that can reconcile this new fact while maintaining the tractabil-

ity and flexibility of the standard model. Building on the model of McFadden (1977), we

consider a generalized extreme value discrete choice model to introduce correlation over

space and time. The SPACE model leads to closed-form solutions for state populations

1ε is the common notation for the random component in a random utility model.
2With flexible enough moving costs that change over the time a person lives in one spot, a model

could match almost any relationship between the t-year migration rate and t. Nonetheless, we still think
the square root fact is a puzzle because for two reasons: first, the models that people actually use do
not explain it, possibly due to the large state-space of very flexible models; and second, because when
a model can match any relationship, there is no reason for it to match this particular relationship. Our
model provides a rationale for this particular relationship. We discuss this further in Section 2.1.
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and interstate migration. One important result of this model is that the cross-state popu-

lation elasticities—a key statistic for quantitative spatial modeling—are directly propor-

tional to the bilateral migration rate.

We show a way to calibrate the model that allows for simple formulas for popula-

tion changes, i.e. “exact hat” algebra, and which also allows computationally-feasible

simulations of an individuals’ location choices over time.3

Next, we compare the implications of the SPACE model to those of the moving cost

model. For many questions, we show that choosing how to model migration is not an

innocuous choice, but leads to important differences in how economists answer central

questions about location choice and migration.

First, we show that the SPACE model is better at predicting future locations of

individuals. We compare the forecasting performance of each model using simulated

log likelihood, and demonstrate that the SPACE model does better at predicting out-of-

sample locations, especially at longer-horizons. This is consistent with the idea that the

SPACE model is able to match realistic dynamics of location choice.

Second, the SPACE model and the moving cost model have very different perspectives

on why people do not move. Moving cost models estimate large moving costs (e.g. Kennan

and Walker, 2011; Giannone, Li, Paixao and Pang, 2020; Zerecero, 2021). In contrast,

the SPACE model does not need moving costs at all to rationalize observed levels of

migration in the data. To the extent that one thinks of moving costs as a friction that

causes misallocation and which can be overcome by policy, those potential welfare gains

are not present in the SPACE model.4

Third, we turn to macroeconomic questions, which typically depend on the elasticity

of local populations with respect to local changes in utility. We show that both models

feature similar short-run population cross-elasticities, in that the elasticity of population

in state i with respect to utility in state j is approximately proportional to the gross

migration rate between the two states.5 In other words, if the purpose of a model with

3For many questions in the quantitative spatial literature, in which economists are interested in
state-level population changes, simulations like these are unnecessary as the aggregate populations can
be solved for analytically.

4In the SPACE model, the ε’s represent anything that determines individuals’ location choice. While
we do not model exactly what these are, we are open to the possibility that this may include information
frictions or other frictions that lead to misallocation or which are policy-relevant. We are simply making
the point that if the planner could magically relocate a person from one place to another without paying
moving costs, that would not be welfare-enhancing in the SPACE model as it would be in the moving
cost model.

5Even though the models have similar elasticities, the rationale for why the elasticity is related to
migration is a bit different. In the SPACE model, the rationale is that migrants are close to indifferent
between living in each state, so the mass of people that will move in response to a small shock is close to
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migration is to predict short-run effects on populations, both models deliver similar results.

However, in the long run, population cross-elasticities are quite different across the

two models. In the SPACE model, population elasticities are the same in the short-

run and the long-run, meaning that long-run elasticities are still proportional to the

migration between the two places. But in the moving cost model, the long-run population

elasticities are approximately the same as a static discrete choice logit model, i.e. the

elasticity is proportional to the population share of the shocked region.6 So the SPACE

and moving cost models have completely different long-run population elasticities (in the

data, population shares and gross migration rates have very low correlation). This is a

problem if we wish to make predictions about long-run populations and we use the wrong

model.

A fourth difference follows naturally from the previous one: the dynamics of regions’

population changes are quite different in the two models. In the SPACE model, the

dynamics are simple. In response to a permanent utility change, the population adjusts

fully, contemporaneous to the utility shock. But in the moving cost model, the dynamics

are relatively slow and can be unintuitive. In that model, a new set of people every

period get a sufficiently large enough shock to move, so a permanent utility shock raises

the migration rate and population adjusts slowly. Furthermore, because the long-run

elasticities are related to population shares, not migration shares, faraway states from the

shock adjust particularly slowly, while nearby states are going to adjust quickly and may

overshoot.

Finally, the SPACE model and the moving cost model interpret the data very differ-

ently in terms of which states have become higher-utility over time. We show that the

SPACE model can use standard exact-hat techniques to map observed population changes

onto implied utility changes across time, as in the moving cost model. When we use U.S.

population data to infer which states are gaining in terms of relative utility, we get very

different answers depending on which model we use. This is critical if we want to estimate

the role of policy or economic shocks on welfare.

We finish the paper by discussing the importance of the differences between the SPACE

and moving cost model in the context of the literature. We show how the differences we

highlight are central to some of the questions that are asked in the dynamic spatial

proportional. In the moving cost model, the rationale is that the extreme value function has a functional
form such that the number of people on the margin is proportional to the number of people who make
that choice.

6So in the moving cost model, the long-run population elasticity of state i and state j to a shock in
state k are the same, no matter how different the migration rates between i and k versus j and k are.
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literature. We discuss whether various approaches to enrich the moving cost model would

deliver similar results to the SPACE model.

In order to clarify the contributions of the model, we wish to be specific regard-

ing the difference between moving costs and persistence in match-specific utility. While

mathematically, it is straightforward to specify them in a model (as we will do here),

it is important to understand what each term means when we try to map it onto the

real world. A typical moving cost model has a one-time irreversible cost borne by peo-

ple who leave one area for another. In contrast, persistent match-specific utility means

that the change in utility when a person moves from one location to the other is both

persistent over time and partially reversible should the person move back to the origi-

nal location. A moving truck and the psychological cost of throwing a goodbye party

clearly are moving costs. But many things described as “costs” in the literature are easily

reversible—although it may decay with time—and not one-time. Having to live a long

way from your friends or favorite amenity is easily reversible and is borne continuously.

So even though those are often called “moving costs” in the literature, we think that that

terminology is used because existing models have not been able to distinguish persistence

in match-specific utility from moving costs. The rest of this paper will give many reasons

why this distinction is important.

Literature

How people choose where to live is a classic question in the urban economics literature.

Many urban models assume utility is equalized across space in the tradition of Rosen

(1979) and Roback (1982). Other more quantitative models assume a discrete choice

framework for locations to answer a variety of questions, such as the role of endogenous

amenities on location choice (Diamond, 2016) or spatial misallocation on aggregate output

(Hsieh and Moretti, 2019).

An increasingly large part of this literature has explicitly looked at the dynamics of

location choice, i.e. migration. Since at least Blanchard and Katz (1992), migration has

been recognized as a key feature to how regions adjust to economic shocks. In this vein,

papers studying the rise or decline of regional economies put a significant emphasis on mi-

gration (Caliendo, Dvorkin and Parro, 2019; Allen and Donaldson, 2020; Morris-Levenson

and Prato, 2022), and especially the speed at which migration happens (Glaeser and Gy-

ourko, 2005; Kleinman, Liu and Redding, 2023; Amior and Manning, 2018; Davis, Fisher

and Veracierto, 2021). Similarly, when aggregating up to the macroeconomy, migration

plays a critical role in how quickly countries adapt to changing technologies or external
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shocks (Tombe and Zhu, 2019; Hao, Sun, Tombe and Zhu, 2020; Eckert and Peters, 2018;

Giannone, 2017; Heise and Porzio, 2021; Bryan and Morten, 2019). A growing literature

has emphasized how migration, including internal migration, plays an important role in

adapting to global warming (Rudik, Lyn, Tan and Ortiz-Bobea, 2021; Cruz and Rossi-

Hansberg, 2021; Oliveira and Pereda, 2020). Migration is also known to be an important

margin when analyzing housing markets in particular (Schubert, 2021).7 Central to many

of these questions is how elastic is the population of a region to various shocks, over vari-

ous time horizons. One of the contributions of this paper is to examine how robust those

conclusions are to alternative ways of modeling migration.

Corresponding to the growth of interesting questions related to migration, there have

also been advances in the ways to model migration. Kennan and Walker (2011) wrote

down the canonical model of migration using the dynamic logit formulation. Kaplan

and Schulhofer-Wohl (2017), Giannone et al. (2020), Porcher (2020), Mangum and Coate

(2019), Zerecero (2021), and Monras (2018) have built on this formulation to include

additional realistic features of moving, such as richer information frictions, wealth of

migrants, home bias, and nested decision making.8 Other approaches, such as Coen-

Pirani (2010) and Davis et al. (2021) do not use the dynamic logit, but have similar

discrete choice models that improve the tractability in a way specific to their goals. All

of these models use moving costs to explain the low rates of migration, and potentially

adjust those moving costs to explain the high rates of return migration. In contrast,

only one paper to our knowledge uses persistence in unobservable match-specific utility

to explain low migration rates: Bayer and Juessen (2012). However, the model Bayer and

Juessen (2012) is too complicated to extend beyond two regions, limiting its use in many

empirical applications.

One type of persistent match-specific utility has been introduced by Zabek (2020),

7Howard and Liebersohn (2021) and Howard, Liebersohn and Ozimek (2023) also study the effects
of changing location choice on housing markets, but model location choice in a static discrete choice
framework rather than explicitly having a notion of migration.

8In particular, Kaplan and Schulhofer-Wohl (2017) argues that changes in information frictions can
help explain the decline in interstate migration, along with decreases in the different returns to various
occupations across space. Giannone et al. (2020) builds a rich model of migration that incorporates
wealth and borrowing, to analyze how credit and savings can affect if and where people choose to move.
Porcher (2020) builds a tractable model of rational inattention in the dynamic migration context to argue
that information frictions are one of the main reasons people do not move. Mangum and Coate (2019)
includes both a bias for living near a birthplace, as well as attachment to a place that grows over time
spent there, and uses that to argue that shift of the American population to the West and to the South is
responsible for slowing labor mobility. Zerecero (2021) also examines a model that includes a preference
for birthplace. Monras (2018) looks at the asymmetric response of inmigration and outmigration to local
shocks, and builds a dynamic nested logit model to better understand the phenomenon.
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Mangum and Coate (2019) and Zerecero (2021), by adding in a preference for living in

one’s birthplace.9 These models have some similarity with the SPACE model, in that they

also tend to feature smaller moving costs (Zerecero, 2021) and would intuitively feature

more return migration than the standard moving cost model. However, adding birthplace

preferences to a moving cost model does not generate the square root fact and does not

change many of the implications we highlight as being distinct between the two models.

At the same time that models of internal migration have become more popular, em-

pirical evidence focused on the causes and barriers to migration has also grown. For

example, Saks and Wozniak (2011) shows migration is cyclical; Kleemans (2015) studies

the income shocks that cause migration; Farrokhi and Jinkins (2021) examines the at-

tachment hypothesis using a policy change amongst Danish refugees; Koşar, Ransom and

Van der Klaauw (2021) uses a survey experiment to better understand how people make

location choice decisions; and Fujiwara, Morales and Porcher (2022) proposes a method-

ology for uncovering information frictions in location choice. Our paper also contributes

to this literature by establishing the additional stylized fact that the t-year migration rate

is proportional to
√
t.

1 Data

Throughout the paper, we primarily use credit data from one of the leading credit report

providers to measure migration (Gies Consumer and Small Business Credit Panel, 2004-

2018), although when we can, we verify the data using the IRS migration data, the

American Community Survey, or the Panel Survey of Income Dynamics (IRS Migration

Data, 2004-2018; Ruggles, Genadek, Goeken, Grover and Sobek, 2015; Panel Survey of

Income Dynamics, 1969-1997).10 The credit data is a 15-year panel of individuals making

up a 1 percent sample of the United States. It records the state of residence in each

year, allowing us to calculate migration rates at longer horizons. The GCCP has a similar

one-year migration rate to the IRS data, which can be seen in Figure 1. One reason the

credit data may have a higher migration rate is that not everyone has a credit report. In

particular, lower income people tend to not have credit reports, and are also less likely to

9The canonical model in Kennan and Walker (2011) also includes a premium for birthplace.
10For other papers using the Gies Consumer and Small Business Credit Panel, see Fonseca (2022),

Fonseca and Wang (2022), and Han (2022). DeWaard, Johnson and Whitaker (2019) analyzes a similar
credit dataset (the Federal Reserve Bank of New York/Equifax Consumer Credit Panel) on how it can
be used to study migration.
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Figure 1: Comparison of 1-year interstate migration rates in IRS and GCCP data.

move.11

The data is consistent with two well-known facts that are often the motivation of

standard moving cost models. The first fact is that interstate migration is rare. In Figure

1, we show that the GCCP records slightly more than 3 percent of Americans moving

between states in any given year. This is slightly higher than the IRS data, which is also

shown in the figure. The vast majority of Americans do not move between states in any

given year.

The second fact is that migration follows a gravity pattern, meaning that the amount

of migration between two states is increasing in each state’s population, and decreasing

in the distance between them. In Table 1, we show the results from a psuedo-poisson

maximum likelihood regression in which we regress migration on log distance and the

log populations of the origin and destination states (Silva and Tenreyro, 2006; Correia,

11While there are some well-known drawbacks to the IRS data, e.g. it is based only on tax filers,
it is one of the most comprehensive administrative datasets keeping track of migration. It is not well
understood why the migration rate is so low in 2014 or so high in 2016, as these anomalous values did
not show up in other datasets measuring migration (see DeWaard, Hauer, Fussell, Curtis, Whitaker,
McConnell, Price and Egan-Robertson (2020)). Similarly, while credit data are not designed as a dataset
to study migration, it does have location information, and the bureau gets the addresses from a person’s
financial accounts. The biggest concern with credit data is that moves may show up with a lag, as people
do not always immediately change their addresses with their financial institutions. For our square root
fact, we check the robustness to using the Panel Survey of Income Dynamics (1969-1997). The utility of
using credit data to discuss internal migration is discussed in depth in DeWaard et al. (2019). The Gies
credit data is an unbalanced panel, with yearly observations occurring in May. For matching migration
patterns and rates, we focus on the 2004-2005 period, so we only observe data if they had a credit report in
both of those years. For some of the dynamics, we address the unbalanced nature of the panel depending
on the moments of the data that we are interested in.
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Table 1: Gravity Equations

(1) (2) (3) (4)
Migration (IRS) Migration (Credit) Migration (IRS) Migration (Credit)

Log Distance -0.736∗∗∗ -0.744∗∗∗ -1.085∗∗∗ -1.063∗∗∗

(0.0572) (0.0515) (0.0694) (0.0672)

Log Origin Population 0.900∗∗∗ 0.923∗∗∗

(0.0832) (0.0797)

Log Destination Population 0.822∗∗∗ 0.893∗∗∗

(0.0976) (0.0799)
Observations 2550 2550 2550 2550
Origin and Destination FEs Yes Yes

Standard errors are two-way clustered by origin and destination states.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Guimaraes and Zylkin, 2019):

logmi→j = α log pi + γ log pj + β log distanceij + εij (1)

where pi is the population of i and mi→j is the 1-year migration from i to j. To calculate

distances between states, we use the geographic center of each state from Rogerson (2015)

and calculate distances using the formula from Vincenty (1975). We find that both α and

γ are positive and β is negative. The coefficients for the IRS data and the GCCP data

are similar. We also show a specification with origin and state destination fixed effects,

and the coefficients on distance are very similar across the datasets.

2 New Fact

Define the t-year migration rate to be the number of people living in a different state

than they did t years ago. The new fact is that the t-year migration rate is approximately

proportional to
√
t. In Figure 2(a), the solid line is the t year migration rate in the GCCP.

The dashed line is a constant times the square root of t, with the constant chosen to match

the level of migration. As is apparent from the figure, the shape of the migration rate is

very similar to the square root line.12

Of course, since we cannot measure dynamic migration moments in the IRS data, one

might wonder if the square root fact is driven by some sort of mismeasurement in the

GCCP. In Figure 2(b), we show that the square root fact is also present in data from the

12Each point is the mean of a binary variable with millions of observations, so if we tried to put
standard errors on the graph, they would not be visible. We show the distribution of the square root fact
across state-pairs and across age cohorts in Appendix B.1.
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Figure 2: Migration Rates at Different Horizons. Migration rate at year t is calculated
as the percentage of people living in a different state than they did t years ago. Both
datasets are unbalanced panels and use any observations in which the state of residence
is recorded t years apart. Source: GCCP and PSID.

Panel Survey of Income Dynamics (1969-1997). In fact, we extend the horizon to 25 years

and show that it holds through that longer time period as well.13

This new fact relates to the more-well-known fact that return migration is common.

Many papers in the literature show a significant fraction of workers return to their pre-

vious location (e.g. Kennan and Walker, 2011; Kaplan and Schulhofer-Wohl, 2017). One

consequence of this fact is that the two-year migration rate is significantly less than twice

the one-year migration rate. However, we believe we are the first to document this specific

relationship.

2.1 The New Fact is a Puzzle

The square root fact is interesting not only because it is an empirical regularity in need

of an explanation, but also because it is at odds with simple existing models. This

section shows that the most common model of internal migration in fact leads to a linear

relationship between the t-year moving rate and t.

First we outline a standard moving cost migration model. There are a continuum of

individuals of mass 1, denoted by n, who can choose to live in locations denoted by i, j,

13Since mismeasurement in the GCCP may be a particular concern for young people, we show in
Appendix B.1 that it holds for people over 45, where age is estimated by the credit bureau.
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or k. An agent that lived in j at t− 1 has utility:

Vnt(j) = max
i
{uit − δij + εint + βEVn,t+1(i)} (2)

where uit is the common utility for everyone living in i, δij is the bilateral moving cost

between i and j, and εint is an independent and identically distributed random variable

with an extreme-value distribution. We assume εint has a Gumbel distribution with scale

parameter 1. If we define vit ≡ uit + βEVn,t+1(i), then the migration probability is given

by:
mi→j,t

pit
=

e−vjt−δij∑
k e
−vkt−δik

(3)

What does this model predict for the dynamics of migration, especially for the shape

of the t-year migration rate? When moving costs are high—which is required to match

the low amounts of interstate migration in the data—then the following proposition shows

that the t-year migration rate is approximately linear in t.

To set up the proposition, it is helpful to suppose that moving costs are given by

δij = δ′ij + ∆ when i 6= j, and δii = 0. For i 6= j, migration costs consist of a pair-

specific component that governs the relative amount of migration to j, and ∆, a common

component which governs the overall amount of migration in the economy. This way,

when we change ∆, we are not changing the relative amount of migration from i to j

versus i to k.

Proposition 1. In the steady-state of a moving cost model, as the common component

of moving costs go to infinity, the t-year migration is proportional to t.

lim
∆→∞

mt
i→j

m1
i→j

= t

where mt
i→j is the t-year migration from i to j.

Proofs are collected in Appendix A.

This proposition establishes that the square root fact is not a natural consequence of

our standard models. In the standard model, we infer high moving costs based on the

fact that migration is low, and this proposition establishes that high moving costs imply

a linear relationship between the t-year migration rate and t.

In many calibrated models, moving costs are large but less than infinity, so we also

check that the model estimated to the data would generate a relationship that looks
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linear.14 First, using the standard moving cost model, we estimate the moving costs that

would correspond to the GCCP migration rates in 2004-2005. Then we calculate the

within-model t-year migration rate, by simulating the model for millions of observations

over 15 years. Figure 3a shows the results of this simulation. The relationship between the

t-year migration rate and t looks very linear, and does not do a good job of approximating

the data.

In simulations, it is also to calibrate migration costs that depend on variables that

the reader might think could break the linear relationship. For example, many models

include as a state variable whether the person moved in the previous year and if so, from

where (e.g. Kennan and Walker, 2011). Here, we use the GCCP data to calibrate a model

in which the moving costs depend on the state of residence, but also the state of residence

from the year before. We show the results in Figure 3b. While this additional state

variable adds a kink at t = 1, the relationship becomes fairly linear again for larger t’s.15

Similarly, one might think that adding age as a state variable could help match the

square root fact since migration rates decline over the life-cycle (through the lens of the

standard model, moving costs increase in age). Calibrating the model to depend on the

GCCP’s age variable still leaves a very linear relationship, as can be seen in Figure 3c.16

Finally, we also check whether adding the state of birth is helpful to match the cur-

vature of the t-year migration rate, since moving back home may be a high-enough prob-

ability event to make Proposition 1 a bad approximation.17 For this calculation, we use

the American Community Survey (ACS) data, which records the state of birth, as well

as interstate migration, to calibrate the t-year migration rate. The migration rate in the

ACS is modestly lower, so the migration costs will be calibrated to be higher. However,

14Alternatively, a reader might wonder if the fact that the world is not in a steady-state could generate
a square root pattern. However, as documented in Jia, Molloy, Smith and Wozniak (2023) and other
papers, gross migration flows are much larger than net migration flows, often by an order of magnitude,
so that cannot explain the difference between moving cost models and the square root fact. In unshown
simulations, we estimate the a moving cost model where the moving costs vary year by year to match
the migration rates in each year, and they are not appreciably different.

15Building on this exercise, one could of course match the square root fact up to 14 years by condition-
ing the moving costs on the person’s location for the last 14 years. But since the model is likely to start
making counterfactual predictions about the dynamics after 14 years, one would still need to proceed
with caution beyond that horizon.

16The GCCP imputes age, so that may introduce errors into the calibration. However, Figure A2
confirms that the GCCP does pick up the lifecycle decline in migration.

17The reader might wonder if other demographics would matter. For example, college educated workers
are known to move more (Molloy, Smith and Wozniak, 2011). However, for immutable characteristics,
the aggregate migration rate would just be the average of the different groups, so if the groups have linear
t-year migration rates, then the aggregate would also be linear. So as long as migration costs are high
for every group, then the t-year migration rate will still be linear.
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Figure 3: Do existing moving cost models match the square root fact? Each panel com-
pares the t-year migration rate in simulations of the moving cost model described in
Section 2.1 to the data. The model is calibrated by picking migration costs to exactly
match interstate migration flows. In Panel (a), migration costs vary by origin-destination
pair. In Panel (b), migration costs are allowed to vary by the interaction of location in the
year prior, origin, and destination (i.e. someone that had lived in state X then moved to
state Y will have different moving costs than someone that lived in state Y for two years).
In Panel (c), migration costs vary by the interaction of age, origin, and destination. And
in Panel (d), migration costs vary by the interaction of birthplace, origin, and destination.
The data is from the GCCP, and for panels (a)-(c), the model is fit on the GCCP data.
Panel (d) is fit using ACS data, which has a lower 1-year migration rate, and so the data
and model do not match even at t = 1.
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what we are primarily interested in is the linear relationship, which does not change with

this additional state variable.

Of course, a flexible enough model of moving costs could hit the square root fact.

For example, one could match many of the dynamic facts about migration by assuming

moving costs increase with the time spent in a particular location and that moving costs

are lower when returning to a past location. Similarly, if we let people be of different

unosbervable types with lots of heterogeneity in moving costs, we could also generate the

square root fact.

We have four comments about this line of thought.

First, these more flexible models are not the models that people actually use. Re-

cent papers that have estimated dynamic effects in spatial models (Caliendo et al., 2019;

Kleinman et al., 2023) do not include features that would generate the square root fact.

Therefore, much of what the literature knows about the macro dynamics of internal mi-

gration is built on models that do not match an important aspect of the micro dynamics.18

Second, and related to the first point, these more-flexible models lose a lot of the

tractability and economic interpretation of the standard moving cost model. If moving

costs depend on a long history of locations, then calculating the macro elasticities depends

on keeping track of the size of the population with each of those histories, which is

computationally expensive. It is also harder to conceptualize what a moving cost is in

the real world when it changes based on tenure, location histories, and unobservable

characteristics of a person.

Third, these models can replicate any relationship between the t-year migration rate

and t. To hit the square root fact, you have to paramaterize these models just right to

not have too much or too little concavity. The model that we propose below can only

generate a square root, and it does so without the complexity or the flexibility of a model

with lots of moving cost heterogeneity. To use the language of Fudenberg, Gao and Liang

(2023), these models are not “restrictive” compared to the model presented below.19

Finally, even if the previous three points are not sufficient to convince the reader that

they might prefer the model in this paper to a very-flexible moving cost model, the reader

18People do write down models which have excess return migration in the first period (Kennan and
Walker, 2011; Kaplan and Schulhofer-Wohl, 2017). But these are also not flexible to match the square
root fact.

19Fudenberg et al. (2023) explains why more restrictive models are desirable compare to less restrictive:
“A potential reason for this preference is that models are often meant to capture behavior in related by
not-identical domains. Given enough data, models that are very unrestrictive will fit any specific data
set well, but may do so by learning idiosyncratic details of those datasets that do not in fact transfer
across settings. In contrast, if a highly specific and structured model happens to fit a data set well, this
may generate more confidence that the model’s structure extends to other settings.”
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might still be interested in knowing about a new model can fit the micro data equally

well and makes different predictions for welfare and counterfactuals. This should inform

us about the robustness of the conclusions drawn with the standard model.

3 New model that can match the new fact

This section introduces a new model of internal migration which can resolve the square

root puzzle from the previous section. Rather than depend on moving costs, it assumes

that the match-specific utility (the ε’s) are spatially-correlated and persistent. In fact,

because the model features Spatially and Persistently Auto-Correlated Epsilons, we call

it the SPACE model.

As in the moving cost model, there is a continuum of individuals with mass 1, a finite

number of discrete locations, and discrete time. We keep the same notation where n

denotes the individual, i the location, and t the year. Individuals pick their location to

maximize utility:

Vnt(~εnt) = max
i
{uit + εnit}+ βE[Vn,t+1(~εt+1)|~εt] (4)

where uit is a common flow utility for location i and εnit (the ith element of vector ~εnt)

is a person-location-match-specific utility.20 Note that the choice of location i does not

affect the continuation value because there are no moving costs, so the choice is made

sequentially each period, and it has no effect on future choices.

To generate spatial correlation, we assume that εnt ≡ (ε1nt, ..., εInt) is distributed as a

generalized extreme value distribution, where the marginal distribution of εint is a Gumbel

distribution, but they are not necessarily independent of one another:21

εnt ∼ F (·)

where

F (ε1nt, ..., εInt) = exp(−G(e−ε1nt , ..., e−εInt)) (5)

where G is a correlation function in the sense of McFadden (1977). To be specific, G is

20We do not take a stand on where the ui’s originate, so the reader can think of the SPACE model as
being the migration block of a spatial model, and that the ui’s would originate in the housing, production,
and amenities blocks.

Note that because there are no moving costs, the continuation value vit = uit + βVn,t+1(~εt+1) differs
from ui by just a constant.

21See Lind and Ramondo (2023) as an example of a generalized extreme value distribution in trade.
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defined over the range of N non-negative real numbers, and it must satisfy the following

properties: it is non-negative; it is homogenous of degree 1; the limit when any one of

its arguments approaches infinity is infinity; and the cross-partial with respect to any k

distinct arguments is nonnegative if k is odd and nonpositive if k is even.

Under these assumptions, the choice probability of an agent choosing choice i is:

pi = evi
Gi(e

v1 , ..., evI )

G(ev1 , ..., evI )

where Gi is the partial derivative of G with respect to its ith argument. See McFadden

(1977) for the derivation.

We also wish to make the ε correlated not just over space but also over time. To do

that, we assume that the joint distribution of εnt and εnt+1 is given by:

(εnt, εnt+1) ∼ F2(·, ·)

where

F2(ε1nt, ..., εInt, ε1nt+1, ..., εInt+1) = exp
(
−G

(
H(e−ε1nt , e−ε1nt+1), ..., H(e−εInt , e−εInt+1)

))
and

H(x1, x2) =

(
x

1
1−ρ
1 + x

1
1−ρ
2

)1−ρ

where ρ < 1. We will further assume that G(H(·, ·), ..., H(·, ·)) is also a correlation

function under the criteria above.

If G has a cross-nested structure with exponents γk for each nest k, then as long as

ρ > γk for all k, G will be a correlation function. This claim is true because under those

conditions, G is the sum of several nested logit correlation functions, and the sum of

correlation functions is a correlation function. This claim is important because then the

function F2 is indeed a proper cumulative distribution function. Lind and Ramondo (2023)

prove that cross-nested formulations of G can approximate any correlation function, so

combined with this proposition, then any correlation function can be approximated by a

correlation function that permits some ρ that induces the persistence we desire to add to

the model.

Note that the cumulative distribution function of εnt can be calculated by taking the

limit as εnt+1 goes to infinity. In this case, limεt+1→∞H(e−εt , e−εt+1) = e−εt . So the

marginal distribution of εnt is given by F from equation (5). A similar argument applies
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so that the marginal distribution of εnt+1 is also given by F . Hence, the cross-sectional

distribution of εi is time-invariant, even though an individual’s εnt will not be the same

as εnt+1.

The joint distribution F2 implies a conditional distribution F̃ (εnt+1|εnt). This can be

iterated as a Markov chain to calculate distributions of future ε’s.

Migration occurs when the locations i that maximize uit + εnit and ui,t+1 + εni,t+1 are

different.

Proposition 2. Under these assumptions and when the vi’s are fixed, then migration

from i to j, is given by:

mi→j = (1− ρ)evi+vj
(
Gi(e

v1 , ..., evI )Gj(e
v1 , ..., evI )

G(ev1 , ..., evI )2
− Gij(e

v1 , ..., evI )

G(ev1 , ..., evI )

)
(6)

Alternatively,

mi→j = (1− ρ)pipj (1 + τij(e
v1 , ..., evI ))

where τij = −Gij(e
v1 ,...,evI )G(ev1 ,...,evI )

Gi(ev1 ,...,e
vI )Gj(ev1 ,...,e

vI )
.

Please refer to Appendix A for the proof.

This formulation resembles a gravity equation. τij, which is non-negative, denotes

the correlation between two alternatives, and more correlated alternatives will have more

migration between them. Similarly, as migration is more correlated over time (higher ρ),

there will be less migration.

Corollary 1. The cross-elasticity of population to utility is given by the migration rate

times a constant.
∂pi
∂vj

=
1

1− ρ
mi→j

when i 6= j.

See Appendix A for the proof. This corollary is important because in many applica-

tions, we are interested in the population elasticity to local shocks. This corollary tells us

that migration is a sufficient statistic to know these elasticities up to a constant.

The migration in Corollary 1 is a steady-state migration between i and j, which in

the steady-state of the model is equal to the migration from j to i. In practice, migration

is rarely exactly balanced. Our recommendation is to use the logarithmic average, i.e.

(mi→j − mj→i)/ log(mi→j/mj→i), because in a parametric version of the model that we

introduce in the next section, this is a very precise approximation of the steady-state

migration we need for corollary 1. See Appendix C for details.
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A reader may wonder if the specific features of the SPACE model are “cooked up”

to match facts but lack a basis in reality. Rather, we think that the SPACE model

has two very realistic features of preferences. First is that the match-specific utility for

location is persistent over time. People mostly cite family and work in surveys about why

they move (Jia et al., 2023). People’s feelings about these things are surely correlated

over time, and it is an empirical fact that each of these things is persistent in terms of

location. Second is that match-specific utility is spatially-correlated. Again, when you

think about people’s stated preferences, the ability to live near family is highly-correlated

across space. If state i is close to family, then states near i are also close to family.

Industrial composition, i.e. the types of jobs people can get, also tend to be geographically

concentrated. Natural amenities or regional cultures—other possible sources of match-

specific utility—are also spatially correlated. The functional forms of equations are indeed

convenient mathematically and are likely not precisely true, but it should be hard to argue

that spatially and auto-correlated match-specific utility is somehow less realistic than the

i.i.d. utilities of a moving cost model.

Having setup the model, we now present a proposition analogous to Proposition 1 from

the moving cost model, to see whether the SPACE model can match the square root fact.

In this case, the limit we consider that makes it so that there is only a little migration is

for the persistence parameter ρ to approach 1.

When ρ is close to 1, εint will resemble a random-walk with logistic innovations. It is

well known that the standard deviation of a random walk grows with the square root of

time. As the standard deviation grows, the odds of crossing a threshold—which corre-

sponds to moving in this model—grow roughly proportionally to the standard deviation,

hence generating the square root fact. We formalize this intuition in the following lemma:

Lemma 1. Define Λn to be the convolution of n i.i.d. mean-zero logistic random variables.

Then,

lim
ρ→1

mt
i→j

m1
i→j

=
E[|Λ2t|]
E[|Λ2|]

where E[| · |] denotes the mean absolute deviation.

Please refer to Appendix A for the proof. This proposition establishes that for ρ close

to 1, relative migration over t years will be proportional to the mean absolute deviation of

the convolution of 2t independent logistic random variables, following the intuition from

above. Importantly, we can calculate bounds on this ratio in the following corollary:
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Proposition 3. As ρ→ 1, the ratio of t-year migration to 1-year migration for any state

pair, is bounded below by
√
t and bounded above by

√
π/3
√
t:

√
t ≤ lim

ρ→1

mt
i→j

m1
i→j
≤
√
π

3

√
t

Please refer to Appendix A for the proof.
√
π/3 is approximately 1.023, so the bound

is tight. This establishes that the migration rate is within 2.3 percent of the square root

fact that motivated the model, when ρ is close to 1.22

3.1 Calibration

Up to this point, we have not taken a stand on the functional form of G because there are

many possible G that would exactly match the populations and migration in the data.

Of course, in many settings where the outcome of interest is the change in populations,

the specific choice of G makes no first-order difference, due to the previous result that
∂pi
∂vj

= 1
1−ρmi→j.

Nonetheless, in some applications, it will be helpful to take a stand on the specific

functional form of G. For most of these applications, it is helpful to pick a functional

form that allows for simple formulas for population changes, and the ability to simulate an

individual’s migration path in a computationally easy way.23 We will also be interested in

finding a G that is consistent with a value of ρ near 1, because that is the parameterization

of ρ that leads to the square root fact.

Consider the following G functional form, which generates a cross-nested logit with

up to two locations per nest:

G =
∑
i

wixi +
∑
i

∑
j<i

(
(wijxi)

1
1−γ + (wjixj)

1
1−γ

)1−γ

Assume we pick the w’s such that G = 1 at our initial levels of xi = evi . Then, the initial

22A tight band in Proposition 3 is intuitive because, if the innovations were normally distributed and
Lemma 1 referenced normal distributions instead of logistic ones, the ratio would be exactly the square
root, without the 2.3 percent deviation. Similarly, if the lemma were based on the standard deviation
rather than the mean absolute deviation, the ratio would also be precisely the square root. Although
this exact relationship does not hold for the MAD of logistic distributions, logistics are approximately
normal, and the MAD is approximately proportional to the standard deviation for many distribution
families. Consequently, it is not surprising that the relationship holds approximately.

23A calibration also allows us to solve for migration outside of steady-state, which we do in Appendix
C.
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population will be given by

pi = wie
vi +

∑
j 6=i

(
(wije

vi)
1

1−γ + (wjie
vj)

1
1−γ

)−γ
(wije

vi)
1

1−γ

and the initial migration by

mij = (1− ρ)

(
pipj +

γ

1− γ

(
(wije

vi)
1

1−γ + (wjie
vj)

1
1−γ

)−γ−1

(wije
vi)

1
1−γ (wjie

vj)
1

1−γ

)
This choice of functional form leads to a cross-nested logit, in which outer nests con-

tains either one or two locations. The within-nest elasticity of substitution is 1
1−γ and the

across-nest elasticity of substitution is 1.

In order to do micro-simulations, it will be helpful to parameterize γ and wij as a

function of ρ, and consider the limit as ρ → 1. In particular, we will parameterize

1 − γ = 1−ρ
1−ρ̃ where ρ̃ is a constant, so as ρ → 1, γ → 1 as well. This will allow us to

consider the nest for each person as fixed over time, but to allow for agents to move within

nests. In order to approximately match the square root fact, we will try to choose a ρ̃ as

close to 1 as possible while also matching migration rates in the data.

Rather than calibrate the wij, we will calibrate

w̃ij ≡ (wije
vi)

1
1−γ

(
(wije

vi)
1

1−γ + (wjie
vj)

1
1−γ

)−γ
Note that this is also a function of ρ since it depends on γ. From there, the wij’s can be

backed out as wij = e−viw̃1−γ
ij (w̃ij + w̃ji)

γ. We will also calibrate wi = 0 because it allows

us to have a higher ρ̃ if there are no agents that will never move. Under this assumption,

pi =
∑
j 6=i

w̃ij (7)

and 1
1−ρmij = pipj + γ

1−γ
w̃ijw̃ji
w̃ij+w̃ji

. But as ρ → 1 and holding constant 1−ρ
1−γ ≡ 1 − ρ̃, then

we can rewrite this formula as
1− ρ̃
mij

=
1

w̃ij
+

1

w̃ji
(8)

We want to maximize ρ̃ subject to (7) and (8). Call the Lagrange multipliers on (7),

λi and the ones on (8), νij. The first-order conditions with respect to w̃ij and w̃ji, which

are necessary for it to be a maximum are λi = 1
w̃2
ij
νij and λj = 1

w̃2
ji
νij. So

w̃ij
w̃ji

=
√

λj
λi

.

We can use (8), along with this new formulation to solve for the w̃ij in terms of these
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Lagrange multipliers:

w̃ij =
1

1− ρ̃
mij

(
1 +

√
λj
λi

)
(9)

Plugging (9) into (7) and multiplying by
√
λi,

(1− ρ̃)
√
λi =

∑
j 6=i

mij

pi

(√
λi +

√
λj

)
If we define the I × I matrix M as

Mij =


mij
pi

if i 6= j∑
k 6=i

mik
pi

if i = j

Then

(1− ρ̃)` = M`

where ` is an I × 1 vector and `i =
√
λi.

24

This equation is satisfied for any eigenvector ` of matrix M , and corresponding eigen-

value (1−ρ̃). However, we also require that both ` and (1−ρ̃) are positive. When mij > 0,

the matrix has all positive values, so there exists a unique real eigenvalue corresponding

to an eigenvector with all positive entries by the Perron (1907)-Frobenius (1912) theorem.

That eigenvalue is our calibration for (1− ρ̃), and the corresponding eigenvector tells us

w̃ij and therefore wij. In particular with the GCCP migration data, ρ̃ is equal to .8913,

which can be used to simulate migration.

This calibration is useful for two reasons. First, because it leads to simple formula for

populations and straightforward exact-hat algebra. Define p̂i = p′i/pi and v̂i = exp(
v′i−vi
1−ρ ).

Then

p̂i = v̂1−ρ̃
i

∑
j 6=i

w̃ij
pi

(w̃ij + w̃ji)

w̃ij v̂
1−ρ̃
i + w̃jiv̂

1−ρ̃
j

The derivation can be found in Appendix A. Recall that w̃ij are easily calculable in

equation (9) from the eigenvector ` and data on migration.25

Second, because each person is drawn into choosing between two locations, and never

24The matrix M is based on data which is typically not in a steady-state. For example, we use data
on migration based on locations in 2004 and 2005, and generally, mi→j 6= mj→i. For mij , we recommend
using the logarithmic average of mi→j and mj→i based on our analysis in Appendix C. For pi, we use
the populations from 2005.

25If a reader wishes to calibrate a SPACE model to do exact hat algebra without having to find an
eigenvector, a more straightforward alternative is to calibrate w̃ij = w̃ji =

2mij

1−ρ̃ , and w̃i ≡ wie
vi =
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considers anywhere else. Their actions are as if they were drawing two Gumbel-distributed

ε’s that are independent between the two locations, but correlated over time with corre-

lation parameter ρ̃.

In particular, it is computationally cheap to simulate sequences of conditional Gumbels

where εt and εt+1 have joint distribution

exp(−(e−εit/(1−ρ̃) + e−εit+1/(1−ρ̃))1−ρ̃)

because there is a closed-form formulation of the CDF of εt+1 given εt. We can easily

draw a sequence for location i and another sequence for location j, and then that person

will pick i when εit > εjt + log
w̃ij
w̃ji

The purpose of a calibration that easily allows for simulation is to verify that the

model matches the dynamic moments of the data besides the square root fact. It is also

helpful to verify that even for ρ̃ < 1, the approximation of the square root fact is still

reasonable.

3.2 Dynamics of Migration in the Calibrated SPACE model

In Figure 4a, we show the t-year migration rate does follow a square root pattern in

both the data and in a simulation of the SPACE model. For the data, we include any

observations for which we have credit reports t years apart, so it should be noted that the

sample changes slightly depending on t.26 The model does not match the data perfectly,

with the lines diverging over time. In part, this is because the model is calibrated to

match the one-year migration rate, and the fourteen-year migration rate, which in the

simulation is about
√

14 times the one-year migration rate, is going to be sensitive to that

choice. The figure also presents the same exercise for a simulation of the moving cost

model, which is much more linear and diverges much more from the data.

pi −
∑
j 6=i w̃ij . Under those assumptions, the exact hat algebra is given by:

p̂i = 1− 2

1− ρ̃
mi

pi
+
∑
j 6=i

4

1− ρ̃
mij

pi

v1−ρ̃
i

v̂1−ρ̃
i + v1−ρ̃

j

This is a simpler calibration because it does not require taking eigenvalues and eigenvectors, but the
upper bound on ρ̃ is maxi{1 − 2mi

pi
}, which is in practice a bit less than 0.8, so the approximation of

ρ close to 1, which generates the square root fact, is less precise. In simulations, this generates extra
concavity compared to the square root fact.

26Focusing only on a balanced panel of individuals gives an indistinguishable pattern, but raises
concerns about excluding younger people who are most likely to move. Each of the dynamic moments
that we look at in Figure 4 selects a slightly different sample of people, so the fact that the model is still
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Figure 4: Dynamic moments. In panel (a), the t-year migration rate is calculated as the
percent of people living in a different state than they were t years ago. Data is from an
unbalanced panel, and included any observations from 2004-2018 for which the state of
residence is observed t years apart. In panel (b), the conditional probability of migration
is plotted. For the value at x years, the probability of migration is conditional on the
person having migrated x years previously and remained in the same state ever since. It
is broken up into return migration, which is when the person moves back to the original
state, and onward migration if they move to a third state. In panel (c), the number
of moves in 14 years is calculated for people whose state is observed in every year from
2004-2018.
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Of course, the t-year migration rate is not the typical way the dynamic moments of

migration are presented in the data, so it is interesting whether the model is able to capture

the more-commonly-examined moments as well. A natural moment is the conditional

probability of moving given a previous move, i.e. the hazard rate of migration.

Figure 4b shows the probability of another migration at different time horizons after an

interstate move.27 Since we do not target these statistics in the calibration, the simulated

statistics do not match the data perfectly. But the general pattern is similar, especially

its decay as the person has lived in the state for longer.

The intuition for the decreasing hazard rate over time is simple. Conditional on having

moved recently, the agents are likely relatively indifferent between the two regions, and

are likely to move back. The longer they have stayed in one region, the more likely that

their accumulated utility shocks have drawn them further away from being indifferent,

so the probability of migration decreases over time. The literature has typically focused

on the concept of “attachment” to explain this phenomenon (Mangum and Coate, 2019;

Farrokhi and Jinkins, 2021). In the SPACE model, people who have lived in a location

for longer are more attached, but it is because their repeated decision not to move has

revealed that they like the location, not due to an economic force that increases their

utility by staying there longer.

Another easy-to-measure moment is the distribution of the number of interstate moves

over time. Figure 4c looks at how many moves are made over a 14 year period. In the

data, a large majority of people make zero moves, but some people make many moves.

Here, we include in this chart only people for whom we have data in all 15 years (for

up to 14 possible moves). The model is able to capture the large fraction of people that

never move, as well as come close to the data on the number of people that move once or

twice. Importantly, it captures the fact that a few percent of people move four or more

times over the fourteen years. The figure also includes similar statistics for a moving cost

model, which does a much worse job.

4 Does the new model matter?

The previous section introduced a new model and showed that it did a better job at

matching dynamic moments in the micro data. In this section, we explore the implications

a good match across the different moments shows the sample does not matter that much.
27To be included in this analysis, a person must show up for the number of years that would be

necessary to calculate the statistic, but we do not use a balanced panel.
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of that model, especially by comparing it to the workhorse model. For some questions,

we find that the differences are minimal, while for others we think there are substantial

differences.

4.1 Micro Forecasting

The first reason we might care about the difference between the two models is for purposes

of forecasting the location of an individual agent. Suppose we observe the agent’s location

in 2004, and wish to forecast where they will live in every subsequent year until 2018. We

use the calibrated versions of each model to do the forecasting. We judge the performance

of the models using the mean Kullback-Leibler divergence. Specifically, we simulate each

model for ten million people, and then for each initial state, we calculate the simulated

probability that a person who was in state i in 2004 ends up in state j in year t. Then

using people’s true locations in the data, we calculate the relative mean log likelihood,

KLt =
1

N

∑
n

log

(
Pdata(lives in j in t|lived in i in 2004)

Pmodel(lives in j in t|lived in i in 2004)

)

for each year. We plot KLt in Figure 5.

Both models initially have a low Kullback-Leibler divergence as they are about equally

good at predicting locations in 2005 since they were both parameterized to match the

migration data in that year. But over time, the moving cost model’s Kullback-Leibler

divergence grows sharply, suggesting that the log likelihood is on average about 0.13 log-

points worse per observation than the maximum possible performance of any model by

2018. In contrast, the SPACE model has a Kullback-Leibler divergence of 0.015 log-points

in 2018, suggesting limited room for further improvement.

The SPACE model does better over time because it can match the dynamic moments.

In particular, many more people end up moving away from their initial state in the moving

cost model because moving probabilities are independent over time, whereas the SPACE

model is better able to match the total number of people who leave.

4.2 Moving costs need not be large

Kennan and Walker (2011) estimate an average moving cost of $312,146 (in 2010 dollars).28

This is more than six times the median household income in that year, which was $49,445

28They also include an analysis of moving costs conditional on moving, but they include the payoff
shocks in the moving costs, so find that the average moving cost is actually very negative.
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Figure 5: Kullback-Leibler divergence of the SPACE and Moving Cost models

(Census, 2011).29 Such a large cost is one of the main reasons that most people do not

move, in their model. Economists can argue about whether that number is reasonable,

and even within Kennan and Walker (2011), there is substantial heterogeneity in moving

costs.

In contrast, the SPACE model can match the main facts about internal migration

without any moving costs.30 In other words, the fact that most people do not move is not

sufficient evidence to conclude that moving costs are large.

A common counterfactual in the literature is to consider changes in moving costs

(Kennan and Walker, 2011; Schubert, 2021; Zerecero, 2021), which is also an actual policy

used by some localities.31 For example, Kennan and Walker (2011) finds that a moving

subsidy could substantially increase the gross migration rate. In a moving cost model, a

temporary incentive to move to location i has a very persistent impact on the population

of i. In contrast, in our model, a moving subsidy would encourage people to relocate, but

29Most papers focusing on the United States estimate moving costs of a similar magnitude (Monras,
2018; Bartik and Rinz, 2018). Tombe and Zhu (2019) also estimates very large moving costs in China,
on the order of 50 percent of annual income within province, and 90 percent of annual income across
provinces. However, their measure of migration is a flow cost, borne by the person every year. Hence, in
distinguishing between moving costs and persistent match-specific utilities, it maps more naturally onto
a persistent utility to not live outside the origin location.

30Including birthplace as a state variable in a moving cost model, which introduces some persistence
in match-specific utilities, lowers estimates of moving costs by about 10 percent (Zerecero, 2021).

31A handful of cities around the United States offer monetary incentives to relocate (Cornerstone
Home Lending, 2021).
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only for as long as the subsidy lasts. After the subsidy expires, they are no more likely

to remain in the place they moved to, than they would be to live there had the subsidy

never occurred.32

One particular way of lowering “moving costs” may be improving infrastructure such as

roads, which increases migration (Morten and Oliveira, 2018). The SPACE model could

be modified to assume that roads increase the correlation of the idiosynchratic shocks

between two places, which raises the migration between them, even though moving costs

have not gone down. In the moving cost model, the increased migration must reflect

lower moving costs, and so welfare would have increased, net the cost of the roads. In the

modified SPACE model, though, the welfare effects are much more muted.33

4.3 Macro Population Elasticities

Another common use for migration models is to calculate population elasticities to changes

in a location’s utility, vi, both in the short-run or the long-run.

In the standard moving cost model, the elasticity of population with respect to vj is

given by:

∂ log pi
∂vj

= −
∑
k

mi→k

pi

mk→j

pj

This is approximately proportional to the migration rate between i and j, since the two

terms where k = i or k = j are much larger than the remaining terms.

The elasticities in the two models are similar in that they are approximately propor-

tional to the migration rate when migration rates are low. Given that the scale of vj is

not specified in either model, the constant terms are ignorable without loss of generality.

However, in the long-run, the similarities of population elasticities between the SPACE

model and the moving cost model break down. Consider a one-time permanent change in

vit for the SPACE model or the moving cost model. In the SPACE model, the population

elasticity is still exactly the same, since it is given by corollary 1.

This is not the case with the moving cost model:

Proposition 4. In steady-state, the long-run elasticity ∂ log pi
∂vj

of a moving cost model is

32Of course, one could imagine other economic reasons that populations remain higher after a popu-
lation expansion, such as the accumulation of housing capital or agglomeration in that place.

33Of course, other welfare benefits, such as those that come through increased trade, do not depend
on how migration is modeled.
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not the same as in the short-run. Rather, as ∆→∞,

lim
∆→∞

∂ log pi
∂vj

= −2pj (10)

when i 6= j.

Recall that the total population is mass 1, so pi is both the population of i and its

population share.

Interestingly, these steady-state elasticities are the same as a static logit, and a key

difference from the SPACE model is that they have no relationship to migration data. In

Appendix B.3, we show equation (10) is a good numerical approximation to the long-run

of a calibrated moving cost model, when moving costs lead to realistic migration rates,

rather than being infinite.

In the long-run, the moving cost model has no notion that closer states are better

substitutes or that states with higher migration are likely to be more impacted by a

change in the other state. The moving cost model would not predict that a state with a

high migration rate has a more long-run elastic population in response to a policy change

than a state with a low migration rate. Rather, the only thing that you need to know is the

population share of the state receiving the shock to calculate all the relevant elasticities

(approximately).34

Figure 6 summarizes the conclusions of this section. In the short-run (Panel a), the

SPACE model and the moving cost model predict practically the same cross-elasticities

of population. But the in the long-run (Panel b), there is almost no relationship between

the two.

4.4 Macro dynamics

Given the differences in long-run population elasticities, it follows that the intermediate

dynamics must also be different across the two models. We illustrate by considering a

one-time permanent shock to Louisiana utility, vLouisiana, to see how populations respond

over time.

34In the moving cost model, the migration rates govern the speed of adjustment (Kleinman et al.,
2023), but not the long-run effects.

Including birthplace as a state variable in the moving cost model would mean that adjustments would
depend on the population shares of people born in different places. To this extent, migration between
states would be correlated to the population cross-elasticities (Zabek, 2020).

Other features of the model can also change the population elasticities. For example, Monte, Redding
and Rossi-Hansberg (2018) adds commuting to a static model of location choice to generate variation in
population elasticities.
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(b) Long-run

Figure 6: A comparison of the population cross-elasticities between the SPACE and mov-
ing cost models. For both figures, each dot represents a pair of states. The point is located
at the population cross-elasticity between the two states in each of the two models. The
constant multiplicative terms are ignored, since each model is subject to a normalization
of utility. All four axes have log scales.

In Figure 7(a) and (b), we show that the population dynamics after a one-time perma-

nent shock are starkly different. In both, we consider a one-time permanent change to the

baseline utility of Louisiana, leaving all other states’ utilities constant, and we simulate

both models for many periods.35

In the SPACE model (Panel a), the population adjustment in Louisiana is immediate,

and the population stops adjusting after the first period. In contrast, in the moving cost

model (Panel b), the population adjustment takes many years, with the model finally

getting close a steady-state after almost 200 years.

In Panels (c) and (d) we illustrate the dynamics for other states in response to the

same shock to Louisiana’s utility. In the SPACE model (Panel c), there is a bigger

population effect on Mississippi than there is on New York, as one would expect due to

the geography. Again the dynamics are immediate. But in Panel (d), the dynamics follow

interesting and perhaps unintuitive patterns. In New York, the population adjustment is

particularly slow because of low migration between Louisiana and New York. In contrast,

for Mississippi, the population dramatically overshoots its long-run steady state because

there is so much migration between Louisiana and Mississippi.

This exercise is not necessarily helpful for distinguishing between the two models, but

35The size of the shocks in each model is normalized to have a long-term effect of about 5 percent
of the population for Louisiana. However, the scales are not particularly important, as the focus of this
exercise is the dynamics.
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Figure 7: Population Dynamics after a one-time permanent change in vLouisiana, in the
SPACE model and the moving cost model, for Louisiana, Mississippi, and New York.
Mississippi and New York were chosen to represent two states for which there is high
gross migration with Louisiana, and low gross migration with Louisiana, respectively.
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it does mean that the models will interpret empirical facts differently. We discuss this

more in Section 5.

4.5 Implied Utility Changes

Given the differences in population elasticities, it must be the case that the models will

imply different things about changes in utility over time. This is important for papers

that wish to estimate the welfare effect of some policy or event that varies across space.

For example, Diamond (2016) asks what determines why people live in different places

over time.

We can represent the SPACE model’s population changes using exact hat algebra.

Under our previous calibration, it is given by:

p̂i = v̂1−ρ̃
i

∑
j 6=i

w̃ij
pi

w̃ij + w̃ji

w̃ij v̂
1−ρ̃
i + w̃jiv̂

1−ρ̃
j

This is straightforward to invert numerically and calculate the v̂i based on the p̂i. Note

that while this exact formula depends on our calibration, it will give the same answer to

first-order of any choice of G, since the population elasticities to v are pinned down by

migration rates.

In contrast, for the moving cost model, the exact hat algebra is different:

p̂it = v̂i
∑
j

mij
pi
p̂jt−1∑

k
mjk
pj
v̂k

This formula is similar to the dynamic hat algebra derived by Caliendo et al. (2019). Note

that it depends on p̂it−1 as well as p̂it. For this exact hat algebra, we need to know about

the change in how populations are changing, rather than simply the change in population.

Again, this is straightforward to invert numerically, given data on p̂it and p̂it−1.

To illustrate this, we consider the utility changes implied by the SPACE model and

moving cost model from 2005-2018, the span of our data. We show the results in Figure

8. In the SPACE model, the places that have the biggest increase in relative utility are in

the South and West, places that have seen large growth in population. New England and

the Rust Belt have some of the largest relative decreases. In the moving cost model, the

utility changes are almost the opposite. New York and New England have increased in

relative utility, while the South and the West have mostly had relative declines. Overall,

there is a -0.49 correlation between the log of utility changes implied by the two models.
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Figure 8: Change in utilities vj, 2005-2018, implied by the SPACE model and the moving
cost model.

This has important implications for estimating spatial models. For example, if one

wanted to estimate the effects of a wage, rent, or amenity change on utility, you would get

very different answers using the implied utilities from the SPACE model versus a moving

cost model.

5 Discussion

5.1 Relation to Literature

Given the major differences between the two models on several of these questions, it is

worth emphasizing why these differences matter. For the micro forecasting and for the

interpretation, we think the reasons to care about differences are obvious, but for the

population elasticities and the dynamics, it is important to consider the context of the

literature.

One big question in the literature is to what extent does population adjust to shocks?

For example, if one particular location has a shock that permanently increases the utility of

living there, how will that affect the distribution of the population around the country?

This is a question that is asked by Caliendo et al. (2019) with respect to the China

shock of Autor, Dorn and Hanson (2013), by Giannone (2017) with respect to skill-

biased technological change, and by Cruz and Rossi-Hansberg (2021), Oliveira and Pereda

(2020), and Rudik et al. (2021) with respect to climate change.36 Based on the previous

36A reader may wonder why we do not replicate one of these papers to highlight the differences.
However, doing such a replication would erroneously indicate that the SPACE model is less good at
hitting the medium-run dynamics of population adjustment. The reason for this is that even if these
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propositions, both models agree that places with high gross migration, such as D.C., have

very elastic population to local shocks in the short-run, compared to places with little

migration. However, in the long-run, the SPACE model continues to make this prediction,

while the moving cost model predicts similar elasticities for all locations. Similarly, in

the short-run, both models agree that the population effects are felt in states that have

lots of migration between them and the state with the shock. A shock to D.C. will

affect Maryland and Virginia more than it will affect Arizona. This is consistent with the

“donut” phenomenon during the recent COVID-19 crisis, as areas around major cities

have experienced population and house price growth in recent years (Ramani and Bloom,

2021). Again, this holds in the long-run too for the SPACE model, but migration would

not generate a long-run donut phenomenon in the moving cost model.

Another key question in this literature is how quickly the migration adjustment takes

place (Kleinman et al., 2023; Amior and Manning, 2018; Caliendo et al., 2019). The

SPACE model answers this question in that population adjustment occurs as quickly as

the baseline utility of a place changes.

In the data, migration is usually quite persistent. For example, the Rust Belt has

had low inmigration for decades, and the Sun Belt has had high inmigration for decades.

In the moving cost model, much of this persistence is due to the fact that migration is

inherently persistent (Kleinman et al., 2023), i.e. the Rust Belt had a large negative

utility shock a long time ago, and the process of moving out has been very slow.

The SPACE model interprets this fact as being about the utility of a location adjusting

slowly. It could be that the underlying shocks to utility are slow. Or there was still a big

initial shock, but some equilibrium force makes utility fall slowly. For example, housing

is durable, and so housing becomes cheap as people move out, keeping utility from falling

too quickly (Glaeser and Gyourko, 2005). Similarly, there may be similar mechanisms

through the labor market that make structural transformation slow.37 Or it could be that

models are not explicitly targeting the medium-run dynamics, they do get to choose what features of
the world to add and can choose to include or not include features that will get the dynamics right. For
example, Glaeser and Gyourko (2005) argues that the reason declining cities decline slowly is because
the housing stock is slow to depreciate. Many of the quantitative papers do not have this feature. So
of course, subbing out the migration block from those models would lead to unrealistic dynamics, if we
did not also add in a feature like the one in Glaeser and Gyourko (2005). Sometimes, people tell us that
they think of the moving costs as representing these other features, such as housing depreciation or labor
market frictions. In that case, we think it is better to explicitly model them. However, we do not think
such a model is within the scope of this paper. Writing a completely new model, while it might add to
the point about macro elasticities, would distract from highlighting the important differences in micro
forecasting and interpretation.

37Kleinman et al. (2023) discuss how having location specific durable capital can keep wages high after
a negative productivity shock.
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initial shocks are small, but then as people move in, the effects on utility become amplified

with a delay (Howard, 2020). The SPACE model would emphasize these various forces as

reasons for persistence in migration, whereas the moving cost model would attribute the

persistence to an inherent property of migration itself, and find less explanatory power

for these forces.

Other papers are concerned with the effects of location-specific shocks on aggregate

outcomes such as welfare or output (Tombe and Zhu, 2019; Eckert and Peters, 2018; Hsieh

and Moretti, 2019). The degree to which people are able to move is an important factor

for these outcomes. Because the second order effects are determined by these population

elasticities, it shows that a shock that affects a higher-gross-migration place will have

larger total effects on welfare if the shock is positive, and smaller effects if the shock is

negative. Again, this holds in the short-run for both models, but in the long-run only for

the SPACE model.

Finally, the spatial correlation of a shock is an important determinant of its welfare

consequences. If a negative shock is extremely localized, it may be easy to move away

from it, and there will be lots of insurance. If shocks are correlated across space, then the

welfare effects may be much less insurable. Of course, in the long-run of a moving cost

model, this effect will no longer hold.

5.2 More complex moving cost models

In Section 4, we compared the SPACE model to a very simple version of a moving cost

model. Yet as mentioned in the literature review, there is significant research that enriches

the moving cost model to match a variety of facts (Kaplan and Schulhofer-Wohl, 2017;

Giannone et al., 2020; Porcher, 2020; Mangum and Coate, 2019; Zerecero, 2021; Monras,

2018). Kennan and Walker (2011) includes features to increase home bias and return

migration.

As we showed in Section 2.1, return migration, home bias, nor age are sufficient features

to hit the square root fact. So the puzzle that motivated the model is not dependent on us

having considered a simple version of the moving cost model. But what about evaluating

the differences between the moving cost model and the SPACE model? Are the conclusions

that the choice of model is important robust to considering richer versions of the moving

cost model? Here, we argue that the answer is yes. In the rest of this section, we consider

each of the differences we highlighted before.

For the prediction of individuals’ locations, the reason that the SPACE model out-

performed the moving cost model was because it could hit the square root fact. So if
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extensions of the moving cost model still do not hit the square root fact, they might be

an improvement at predicting locations, but are not going to make the same predictions

as the SPACE model.

For the interpretation of why people rarely move, some of the additional features

imply lower estimated moving costs (Zerecero, 2021; Giannone et al., 2020), but never by

orders of magnitude. So the difference between the SPACE model—which has no moving

costs—and any moving cost model will remain large.

For population elasticities, more complex moving cost models feature long-run elastic-

ities which may not necessarily be the same as a static logit model. For example, models

with home bias have more similar elasticities to the SPACE model than the baseline mov-

ing cost model does.38 However, except by coincidence, none of the additional features

would generate the feature that the long-run and short-run population elasticities are the

same. So the dramatic difference between the SPACE model and the moving cost model

will remain, both for long-run elasticities and for dynamics.

For the implied utility changes, the exact implied utilities will obviously change with a

richer model. However, it doesn’t change the fundamental fact that the implicit utility is

a function of migration in the moving cost model, but populations in the SPACE model.

6 Conclusion

We use a dataset of credit reports to document a new fact: the t-year migration rate is

proportional to the square root of t. We propose a new model to match this fact, which

has different implications for many economic questions than the standard moving cost

model.

38With home bias, the elasticities are given by lim∆→∞ ∂ log pj/∂vk = −
∑
i wijpik, where wij =

pij
pj

is the share of people in j who are from i, and pik is the share of people from i living in j. These
population shares are likely correlated to the amount of bilateral migration. However, it is a different
formula, and the population share levels are likely different than the migration rates, so the dynamics in
the two models will still be different.
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Online Appendix

A Proofs

A.1 Proof of Proposition 1

Proof: In the steady-state of the moving cost model, consider the probability of someone

living in i living in j after t years. This probability is given by:

mt
i→j

pi
=

∑
k1,k2,k3,...,kt−1∈I

mi→k1
pi

(
t−2∏
s=1

mks→ks+1

pks

)
mkt−1→j

pkt−1

Consider

lim
∆→∞

mt
i→j

mi→j
= lim

∆→∞

∑
k1,k2,k3,...,kt−1∈I

mi→k1
pi

(∏t−2
s=1

mks→ks+1

pks

)
mkt−1→j

pkt−1

mi→j
pi

We can calculate each term in the summation. First, consider all the summations such

that there exists a cutoff T such that for all s < T , ks = i and for all s ≥ T , ks = j.

There are t such combinations. For each combination, the product in the numerator is a

lot of migration probabilities from i to i (non-migration), and one migration probability

from i to j. For the non-migration probabilities, the limit as δ →∞ of mi→i
pi

or
mj→j
pj

is 1.

The remaining term,
mi→j
pi

cancels with the denominator, so the limit is 1.

Next consider all other terms. For each, there is one year in which the person moves

away from i and another year in which they move from their next location to somewhere

else. Put these two terms first in the product:

mi→`/pi
mi→j/pi

· m`→ks
p`

· ...

The first fraction is exp(v`t−δi`)
exp(vjt−δij) regardless of ∆, which is a constant. The second term

converges to zero when ∆ → ∞. All the following terms are between 1 and 0, so the

whole product converges to 0.

Therefore, the sum is over t 1’s and many zeros. Hence,

lim
∆→∞

mi→j,t

mi→j
= t
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A.2 Proof of Proposition 2

We wish to show that:

mi→j = (1− ρ)evi+vj
(
Gi(e

v1 , ..., evI )Gj(e
v1 , ..., evI )

G(ev1 , ..., evI )2
− Gij(e

v1 , ..., evI )

G(ev1 , ..., evI )

)
The definition of migration is

P (vi + εit ≥ max
k
vk + εit, vj + εjt+1 ≥ max

k
vk + εkt+1)

when (ε, εt+1) ∼ F2. We can express this as an integral:∫
vi+εit≥maxk vk+εkt
vj+εjt+1≥maxk vk+εkt

dF2(εt, εt+1)

We can integrate out all the ε’s except εit and εjt+1, which leaves us with just the cross-

partial derivative of F2 with respect to the remaining two ε’s, evaluated at vi + εit − vk
for all the εkt or vj + εjt+1 − vk for all the εkt+1:∫ ∞
−∞

∫ ∞
−∞

∂2F2

∂εit∂εjt+1

(vi− v1 + εit, ..., vI − v1 + εit, vj − v1 + εIt+1, ..., vj − vI + εjt+1)dεitdεjt+1

Recall that

F2 = exp(−G((e−ε1t/(1−ρ) + e−ε1t+1/(1−ρ))1−ρ, ..., (e−εIt/(1−ρ) + e−εIt+1/(1−ρ))1−ρ)))

So

∂2F2

∂εit∂εjt+1

= exp(−G)GiGj(e
−εit/(1−ρ) + e−εit+1/(1−ρ))−ρe−εit/(1−ρ)(e−εjt/(1−ρ) + e−εjt+1/(1−ρ))−ρe−εjt+1/(1−ρ)

+ exp(−G)Gij(e
−εit/(1−ρ) + e−εit+1/(1−ρ))−ρe−εit/(1−ρ)(e−εjt/(1−ρ) + e−εjt+1/(1−ρ))−ρe−εjt+1/(1−ρ)

G is homothetic of degree 1, so Gi is homothetic of degree 0 and Gij is homothetic of

degree -1. So

G((e−(vi−v1+εit)/(1−ρ) + e−(vj−v1+εjt+1)/(1−ρ))1−ρ, ..., (e−(vi−vI+εit)/(1−ρ) + e−(vj−vI+εjt+1)/(1−ρ))1−ρ)

= G(ev1 , ..., evI )(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ

and
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Gi((e
−(vi−v1+εit)/(1−ρ) + e−(vj−v1+εjt+1)/(1−ρ))1−ρ, ..., (e−(vi−vI+εit)/(1−ρ) + e−(vj−vI+εjt+1)/(1−ρ))1−ρ)

= Gi(e
−v1 , ..., e−vI )

and

Gij((e
−(vi−v1+εit)/(1−ρ) + e−(vj−v1+εjt+1)/(1−ρ))1−ρ, ..., (e−(vi−vI+εit)/(1−ρ) + e−(vj−vI+εjt+1)/(1−ρ))1−ρ)

=
Gij(e

v1 , ..., evI )

(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ

Since G(v1, ..., vI) is just a constant, let us denote it by Ḡ. Similarly, denote Ḡi ≡
Gi(v1, ..., vI) and Ḡij ≡ Gij(v1, ..., vI).

So our integral becomes∫ ∞
−∞

∫ ∞
−∞

exp(−Ḡ(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ)ḠiḠj

× (e−εit/(1−ρ) + e−(εjt+1+vj−vi)/(1−ρ))−ρe−εit/(1−ρ)(e−(εit+vi−vj)/(1−ρ) + e−εjt+1/(1−ρ))−ρe−εjt+1/(1−ρ)

+ exp(−Ḡ(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ)Ḡij

× 1

(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ

× (e−εit/(1−ρ) + e−εit+1/(1−ρ))−ρe−εit/(1−ρ)(e−εjt/(1−ρ) + e−εjt+1/(1−ρ))−ρe−εjt+1/(1−ρ)dεitdεjt+1

This can be simplified:∫ ∞
−∞

∫ ∞
−∞

exp(−Ḡ(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ)

×
(

(ḠiḠj + Ḡij
1

(e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ

)
× evi+vj(e−(εit+vi)/(1−ρ) + e−(εjt+1+vj)/(1−ρ))−2ρe−(εit+vi)/(1−ρ)e−(εjt+1+vj)(1−ρ)dεitdεjt+1

Consider the following u-substitution:

u = (e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))1−ρ

du = (e−(vi+εit)/(1−ρ) + e−(vj+εjt+1)/(1−ρ))−ρe−(vj+εjt+1)/(1−ρ)dεjt+1
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This leads to a lot of simplification:∫ ∞
−∞

∫ ∞
e−(vi+εit)

exp(−Ḡu)

(
(ḠiḠj + Ḡij

1

u

)
evi+vju−ρ/(1−ρ)e−(εit+vi)/(1−ρ)dudεit

We can change the order of integration:∫ ∞
0

∫ ∞
−vi−log u

exp(−Ḡu)

(
(ḠiḠj + Ḡij

1

u

)
evi+vju−ρ/(1−ρ)e−(εit+vi)/(1−ρ)dεitdu

And evaluate the interior integral:∫ ∞
0

exp(−Ḡu)

(
(ḠiḠj + Ḡij

1

u

)
evi+vju−ρ/(1−ρ)[(1− ρ)e−(εit+vi)/(1−ρ)]∞−vi−log udu

Plugging in,

(1− ρ)evi+vj
∫ ∞

0

exp(−Ḡu)

(
(ḠiḠj + Ḡij

1

u

)
u−ρ/(1−ρ)u1/(1−ρ)du

Simplifying,

(1− ρ)evi+vj
∫ ∞

0

exp(−Ḡu)
(
(ḠiḠju+ Ḡij

)
du

Evaluation the integral,

(1− ρ)evi+vj
[
−uḠiḠj

Ḡ
e−Ḡu − ḠiḠj

Ḡ2
e−Ḡu − Ḡij

Ḡ
e−Ḡu

]∞
0

This simplifies to:

(1− ρ)evi+vj
(
ḠiḠj

Ḡ2
+
Ḡij

Ḡ

)
To see the other formulation, recall that pi = evi Ḡi

Ḡ
. If we factor that out,

(1− ρ)pipj

(
1 +

ḠijḠ

ḠiḠj

)
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A.3 Proof of Corollary 1

The derivative of pi with respect to vj is:

∂pi
∂vj

= evi+vj
(
−Gi(e

v1 , ..., evI )Gj(e
v1 , ..., evI )

G(ev1 , ..., evI )2
+
Gij(e

v1 , ..., evI )

G(ev1 , ..., evI )

)
(11)

By equation (6), we can substitute 1
1−ρmi→j for the right-hand side.

A.4 Exact Hat Algebra Derivation

Consider the calibration from Section 3.1. Here, we show the derivation for the exact hat

algebra. We would like to express p̂i ≡ p′i/pi as a function of v̂i ≡ exp((v′i − vi)/(1 − ρ))

in the limit as ρ→ 1.

First, assume that G does not change with vi as ρ → 1. We can verify this at the

end by checking whether
∑

i pip̂i = 1. Under this assumption, we only have to consider

changes in Gie
vi . This quantity is given by:

p′i =
∑
j 6=i

(
(wije

v′i)
1

1−γ + (wjie
v′j)

1
1−γ

)−γ
(wije

v′i)
1

1−γ

This can be rewritten

p′i =
∑
j 6=i

(
(wije

vi)
1

1−γ v̂1−ρ̃
i + (wjie

vj)
1

1−γ v̂1−ρ̃
j

)−γ
(wije

vi)
1

1−γ v̂1−ρ̃
i

Recall that wije
vi = w̃1−γ

ij (w̃ij + w̃ji)
γ.

p′i =
∑
j 6=i

(
w̃ij(w̃ij + w̃ji)

γ
1−γ v̂1−ρ̃

i + w̃ji(w̃ij + w̃ji)
γ

1−γ v̂1−ρ̃
j

)−γ
w̃ij(w̃ij + w̃ji)

γ
1−γ v̂1−ρ̃

i

Simplifying,

p′i =
∑
j 6=i

(
w̃ij v̂

1−ρ̃
i + w̃jiv̂

1−ρ̃
j

)−γ
w̃ij(w̃ij + w̃ji)

γ v̂1−ρ̃
i

Recall that as ρ→ 1, γ → 1 as well, so

p′i =
∑
j 6=i

w̃ij
w̃ij + w̃ji

w̃ij v̂
1−ρ̃
i + w̃jiv̂

1−ρ̃
j

v̂1−ρ̃
i
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To express it as p̂i, divide both sides by pi:

p̂i =
∑
j 6=i

w̃ij
pi

w̃ij + w̃ji

w̃ij v̂
1−ρ̃
i + w̃jiv̂

1−ρ̃
j

v̂1−ρ̃
i

A.5 Proof of Lemma 1

Before we prove Lemma 1, we will need the following lemma.

Lemma 2. Define Υ to be the cumulative distribution function of the conditional distri-

bution ∆εn = εnt+1−εnt
1−ρ given εnt. Then,

lim
ρ→1

Υ(∆ε1,∆ε2,∆ε3, ...|ε1t, ε2t, ε3t, ...) =
1

1 + e∆ε1

1

1 + e∆ε2

1

1 + e∆ε3
...

Proof: The conditional distribution of εt+1 given εt is given by

∂IF2∏
i ∂εit

(ε1t, ε2t, ...εIt, ε1t+1, ε2t+1, ...εIt+1)

∂IF2∏
i ∂εit

(ε1t, ε2t, ...εIt,∞,∞, ...,∞)

which is

f
(
−(1− ρ) log(e−

ε1t
1−ρ + e−

ε1t+1
1−ρ ),−(1− ρ) log(e−

ε2t
1−ρ + e−

ε2t+1
1−ρ )...

)
f(ε1t, ε2t, ...)

∏
i

(1 + e−
εit+1−εit

1−ρ )−ρ

This means that the CDF of ∆ε is given by

Υ =
f
(
ε1t − (1− ρ) log(1 + e−∆ε1), ε2t − (1− ρ) log(1 + e−∆ε2), ...

)
f(ε1t, ε2t, ...)

∏
i

(1 + e−∆εi)−ρ

Taking the limit as ρ→ 1 gives us:

lim
ρ→1

Υ =
∏
i

1

1 + e−∆εi

This lemma implies that when ρ is close to 1, the changes in the ε’s are well-approximated

by independent logistic distributions.

Now we turn to Lemma 1. Migration is is given by:

ms
ij = P(vi + εin0 > max

k
vk + εkn0 and vj + εjns > max

k
vk + εkns)
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ms
ij =

∫
εi0>maxk{vk−vi+εk0}, εjs>maxk{vk−vj+εks}

dF (εs|ε0)dF (ε0)

ms
ij =

∫
εi0>maxk{vk−vi+εk0},

(1−ρ)
∑s
r=1 ∆εjr+εj0>maxk{vk−vj+

∑s
r=1(1−ρ)∆εkr+εk0}

dΥ(∆εs|εs−1) · · · dΥ(∆ε2|ε1)dΥ(∆ε1|ε0)dF (ε0)

Define κj =
∑s

r=1 ∆εjr. This is the cumulative change in εj relative to εi.

ms
ij =

∫
εi0>maxk{vk−vi+εk0},

(1−ρ)κj+εj0>maxk{vk−vj+(1−ρ)κk}

dF (ε0)dΥs(κ|ε0)

Define

f(vi + εi0 = vj + εj0) = lim
ρ→1

1

1− ρ

∫
vi+εi0>maxk 6=i,j vk+εk0

vj−vi<εi0−εj0<vj−vi+(1−ρ)

dF (ε0)

Roughly, this is a measure of the number of people that just barely prefer i to j at time

0. This is well-defined because F is differentiable.

Note that

lim
ρ→1

1

1− ρ

∫
vi+εi0>maxk 6=i,j vk+εk0

vj−vi<εi0−εj0<vj−vi+(1−ρ)
vk−vi<εi0−εk0<vk−vi+A(1−ρ)

dF (ε0) = 0

when j 6= k for any constant A. In other words, the odds of being roughly indifferent

between three places vanishes more quickly.

Take the following limit as ρ→ 1:

lim
ρ→1

ms
ij

1− ρ
= f(vi + εi0 = vj + εj0)

∫
κj−κi>0

(κj − κi)dΥs(κ)

Note that all the k 6= i, j drop out as ρ→ 1 because for any κk, the odds that it exceeds
vj−vk
1−ρ + κj goes to zero from the integral above. Also note that Ψs does not depend on ε0

because of the preceding lemma.

Υs(κ) is the cdf of a convolution of s independent logistic distributions for each i.

Since logistics are symmetrical, we can rewrite this as

lim
ρ→1

ms
ij

1− ρ
= f(vi + εi0 = vj + εj0)

∫ ∞
0

κdΨ2s(κ)

where Ψt is the convolution of t i.i.d. unidimensional logistic functions.
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Finally, this implies that

lim
ρ→1

ms
ij

m1
ij

=

∫∞
0
κdΨ2s(κ)∫∞

0
κdΨ2(κ)

A.6 Proof of Proposition 3

We intend to show that √
2

s

∫ 0

−∞Ψs(κ)dκ∫ 0

−∞Ψ2(κ)dκ

is between 1 and
√
π/3 for s ≥ 2.

We proceed in two steps. First we show that the expression of interest is increasing in

s. Then we find the limit as s→∞, which is an upper bound. Since it is trivially equal

to 1 for s = 2, that establishes the lower bound.

The expression of interest is increasing

First, we would like to show that

1√
s+ 1

∫ 0

−∞
Ψs+1(κ)dκ ≥ 1√

s

∫ 0

−∞
Ψs(κ)dκ

Note that by integrating by parts,

1√
s

∫ 0

−∞
Ψs(κ)dκ =

1√
s

∫ 0

−∞
−κψs(κ)dκ =

1

2
√
s
E[|Xs|]

where the second equality holds because the distribution is symmetric, and we define ψs

to be the pdf, and Xs to be a random variable with distribution Ψs. This is useful because

we will now consider the Fourier transformation of the absolute value function

|x| = 1

π

∫ ∞
−∞

1− e−iux

u2
du

Taking expectations,

E[|X|] =
1

π

∫ ∞
−∞

1− E[e−iuX ]

u2
du

E[e−iuX ] is the characteristic function, which is known for convolutions of logistic
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functions. In particular, the characteristic function of a standard logistic function is:

φ(u) =
πu

sinh(πu)

So the convolution of s logistic functions is:

φs(u) =

(
πu

sinh(πu)

)s
Plugging this into the Fourier transformation of the absolute value,

1√
s
E[|Xs|] =

1

π

1√
s

∫ ∞
−∞

1−
(

πu
sinh(πu)

)s
u2

du

A simple u-substitution:

1√
s
E[|Xs|] =

1

π

∫ ∞
−∞

1−
(

πu/
√
s

sinh(πu/
√
s

)s
u2

du

And because sinh is an odd function, the integrand is an even function. So we can simplify:

1√
s
E[|Xs|] =

2

π

∫ ∞
0

1−
(

πu/
√
s

sinh(πu/
√
s

)s
u2

du

Now we want to prove that this is increasing in s. A sufficient condition is to prove that(
πu/
√
s

sinh(πu/
√
s

)s
is decreasing in s for all u. Because we aim to prove it is true for all u, we can drop the

π, and we will consider the log of the expression, which is decreasing if and only if the

expression itself is decreasing.

f(s) = s

(
log

(
u√
s

)
− log

(
1

2

(
exp

(
u√
s

)
+ exp

(
− u√

s

))))
Even though we only care about discrete s, this equation is well-defined for continuous

s, and if it is decreasing for all s that are continuous, then it is also decreasing for all

discrete s.

So let us take the derivative with respect to s and show that it is negative for all u.
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f ′(s) = log

(
u√
s

)
− log

(
1

2

(
exp

(
u√
s

)
+ exp

(
− u√

s

)))

+ s

− 1

2s
+

(
exp

(
u√
s

)
− exp

(
− u√

s

))
(

exp
(

u√
s

)
+ exp

(
− u√

s

)) 1

2

u

s3/2


This simplifies to:

f ′(s) = log

(
u√
s

)
− log

1

2
− log

(
exp

(
u√
s

)
+ exp

(
− u√

s

))

− 1

2
+

exp
(

u√
s

)
− exp

(
− u√

s

)
exp

(
u√
s

)
+ exp

(
− u√

s

) 1

2

u√
s

Note that

log

(
u√
s

)
≤ log 2− 1 +

1

2

u√
s

because log is concave and the right-hand side is the first-order Taylor expansion of the

log around 2. Also note that

− log

((
exp

(
u√
s

)
+ exp

(
− u√

s

)))
≤ − u√

s

Finally, note that

exp
(

u√
s

)
− exp

(
− u√

s

)
exp

(
u√
s

)
+ exp

(
− u√

s

) ≤ 1

Then

f ′(s) ≤ log 2− 1 +
1

2

u√
s
− log

1

2
− u√

s
− 1

2
+

1

2

u√
s

= log 4− 3

2
< 0

Therefore, 1√
s

∫ 0

−∞Ψs(κ)dκ is increasing in s.

The expression of interest is bounded above by
√
π/3

Given that 1√
s

∫ 0

−∞Ψs(κ)dκ is increasing in s, we next focus on its value at s = 2 and as

s→∞.

First, consider its limiting behavior as s → ∞. Here, we can apply the central limit

theorem, which tells us that the sum of many logistic variables, divided by the square root
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of s approaches a normal variable with standard deviation equal to that of the standard

logistic, known to be π√
3
. Therefore, we consider

∫ 0

−∞
Φ

(
x
√

3

π

)
dx

where Φ is the standard normal distribution CDF. Integrating by parts,

u = Φ

(
x
√

3

π

)
, v = x, du =

√
3

2π3
exp(−3x2

2π
), dv = dx

So,

∫ 0

−∞
Φ

(
x
√

3

π

)
dx =

[
Φ

(
x
√

3

π

)
x

]0

−∞

−
∫ 0

−∞
x

√
3

2π3
exp(−3x2

2π
)dx

=

√
π

6
[e−x

2/2]0−∞

=

√
π

6

We are also interested in s = 2, which we can calculate via integration of the logistic

probability density function.

1√
2

∫ 0

−∞
Ψ2(κ)dκ =

1√
2

∫ 0

−∞

∫ ∞
−∞

∫ κ−x

−∞

e−x

(1 + e−x)2

e−y

(1 + e−y)2
dydxdκ

=
1√
2

∫ 0

−∞

∫ ∞
−∞

e−x

(1 + e−x)2

1

1 + e−(κ−x)
dxdκ

=
1√
2

∫ 0

−∞

[
−e

κ(−(ex + 1) log(eκ + ex) + eκ + (ex + 1) log(ex + 1)− 1)

(eκ − 1)2(ex + 1)

]∞
−∞

dκ

=

∫ 0

−∞

eκ(−κ+ eκ − 1)

(eκ − 1)2
dκ

=
1√
2

[
κ

eκ − 1
+ κ

]0

−∞

=
1√
2
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So the fraction

lim
s→∞

√
2

s

∫ 0

−∞Ψs(κ)dκ∫ 0

−∞Ψ2(κ)dκ
=

√
π/6√
1/2

=

√
π

3

In words, this means that the ratio we are interested will converge to
√
π/3 as s approaches

∞.

The expression of interest is bounded below by 1

We also know the ratio for s = 2 because it is trivial:√
2

2

∫ 0

−∞Ψ2(κ)dκ∫ 0

−∞Ψ2(κ)dκ
= 1

Completing the proof

And since 1√
s

∫ 0

−∞Ψs(κ)dκ is increasing in s it follows that

1 ≤
√

2

s

∫ 0

−∞Ψs(κ)dκ∫ 0

−∞Ψ2(κ)dκ
≤
√
π

3

for all s ≥ 2.

Finally, we substitute in the expression from Lemma 1:

1 ≤ 1√
s

ms
ij

m1
ij

≤
√
π

3

A.7 Proof of Proposition 4

When ∆→∞, the migration rate is given by:

mi→j

pi
= exp(vj − vi − δij)

So
∂ logmi→k

∂vk
− ∂ log pi

vk
= 1

and
∂ logmk→i

∂vk
− ∂ log pk

vk
= −1
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In any steady-state, it must be the case that total inmigration and total outmigration are

equal, which means that ∑
i 6=k

(
∂mi→k

∂vk
− ∂mk→i

∂vk

)
= 0

For all k 6= j, the change in ∂ log pj/∂vk must be the same. This is because the migration

rate between i and j does not change with vk when ∆→∞. So if their relative populations

change, then the migration levels will change and we will not be in steady-state.

Substituting in, (∑
i 6=k

mi→k

)(
∂pi
∂vk

+ 1−
(
∂pk
∂vk
− 1

))
= 0

where we can pull out the ∂pi/∂vk since it is the same for all i. This simplifies to:

∂ log pk
∂vk

− ∂ log pj
∂vk

= 2

The total population is fixed:

pk
∂ log pk
∂vk

+ (1− pk)
∂ log pj
∂vk

= 0

So we need to solve for the population elasticities with two equations and two unknowns.

The solution is:

∂ log pk
∂vk

= 2− 2pk

∂ log pj
∂vk

= −2pk
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B Appendix Tables and Figures

B.1 Distribution of the Square Root Fact

In this subsection, we examine how the square root fact is distributed across state pairs

and age cohorts to see if it holds generally or is specific to our aggregation.

To create Figure A1a, we calculate mt
i→j, the migration rate from state i to state

j at time t, for all state pairs. Because migration volumes vary significantly between

different pairs (e.g., migration between California and Texas is much higher than between

Wyoming and Vermont), we apply a normalization to ensure comparability. Specifically,

we use the factor

cij =

∑14
x=1

√
x∑14

t=1m
t
i→j

,

which scales the migration rates relative to the square root benchmark. We then plot

the 5th, 25th, 50th (median), 75th, and 95th percentiles, along with the mean, of the

normalized migration rates cijm
t
i→j across all state pairs. These values are weighted by

the total migration volume
∑14

t=1m
t
i→j for each pair. The results indicate that the square

root fact holds consistently across state pairs, with relatively little deviation.

A similar analysis is presented in Figure A1b, where we examine the square root fact

across different age cohorts rather than state pairs. Again, the distribution closely aligns

with the square root relationship, though there is slightly more variation compared to the

state-pair analysis. Notably, we observe a “bulge” above the square root line at shorter

horizons. This deviation is driven by younger cohorts.
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(a) Square Root Fact across state-pairs. For each state-pair, we calculate the share of people
that move from state i to state j over t years. We then normalize these shares such that the
sum of the shares over t equals

∑14
x=1

√
s. This figure shows the t-by-t distribution over the (i, j)

pairs, weighted by the number of migrants from i to j.
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(b) Square Root Fact across age cohorts. For each age cohort, we calculate the share of people
that move from state i to state j over t years. We then normalize these shares such that the
sum of the shares over t equals

∑14
x=1

√
s. This figure shows the t-by-t distribution over the age

cohorts, weighted by the size of the cohort.
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B.2 Age and the Square Root Fact

A reader might worry that migration in the GCCP is not measured well for young people.

For example, college students may not be measured accurately. In the GCCP, the data

provider includes a proxy for age, which we use to exclude people that are young. As

you can see in Figure A2a, younger people are much more likely to move, and so it is a

reasonable concern that the square root fact may be specific to young people. However,

in Figure A2b, we can exclude people below the age of 45, and the square root fact still

holds.
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(a) Moving probability by age in the GCCP
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(b) Square root fact for people over 45 in the GCCP

Figure A2: Robustness to considering whether age explains the square root fact
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B.3 Long-run population elasticities in the moving cost model

In this appendix, we compare the elasticities in the calibrated moving cost model to the

approximation from Proposition 4, which stated that the long-run population elasticities

were proportional to those of a standard static logit model.

Calculating these elasticities for the moving cost model is not straightforward analyti-

cally, but easy to do numerically. For each state, we change the utility by a small amount,

calculate the new migration matrix from equation (3), and simulate 500 periods to see

how much population in each state changes.

The overall correlation between the long-run elasticities of the moving cost model and

the static logit is 0.99996. Splitting it between same-state and cross-state elasticities, the

correlation is 0.948 and 0.9994, respectively. Hence, it is a reasonable approximation to

say that the moving cost model approaches a static logit in the long-run.

We show a plot of the cross-state elasticities in Figure A3. The relationship is quite

strong.

Recall that, in contrast, the SPACE model does not approach a static logit model,

but has a much richer set of cross-elasticities, given by the migration shares.
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Figure A3: Population cross-elasticities in simulations of the moving cost model versus
the theoretical approximation (in a static logit, the cross-elasticity is proportional to the
population share)

C Non-Steady-State Migration

In our calibration, we can still solve for migration even if the model is not in steady-state.

In particular, in a two-region model where the ε’s are independent across space and the
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correlation across time is governed by ρ̃, migration is from i to j is defined as:

mi→j = P (εi1 + vi1 > εj1 + vj1, εi2 + vi2 < εj2 + vj2)

where

F (εi1, εj1, εi2, εj2) = exp

(
−
(
e−

εi1
1−ρ̃ + e−

εi2
1−ρ̃

)1−ρ̃
−
(
e−

εj1
1−ρ̃ + e−

εj2
1−ρ̃

)1−ρ̃
)

Let us define v1 = vi1− vj1 and v2 = vi2− vj2. Without loss of generality, assume v2 > v1.

This implies that mj→i > mi→j Then the probability is given by∫ ∞
−∞

∫ ∞
−∞

∂2F

∂εi1εj2
(εi1, εi1 − v1, εj2 + v2, εj2)dεi1dεj2

Written out,

∫ ∞
−∞

∫ ∞
−∞

exp

(
−
(
e−

εi1
1−ρ̃ + e−

εj2+v2
1−ρ̃

)1−ρ̃

−
(
e−

εi1−v1
1−ρ̃ + e−

εj2
1−ρ̃

)1−ρ̃
)

×
(
e−

εi1
1−ρ̃ + e−

εj2+v2
1−ρ̃

)1−ρ̃
e−

εi1
1−ρ̃

(
e−

εi1−v1
1−ρ̃ + e−

εj2
1−ρ̃

)1−ρ̃
e−

εj1
1−ρ̃dεi1dεj2

If we substitute

u = −(e−
εi1
1−ρ̃ + e−

εj2+v2
1−ρ̃ )1−ρ̃

w = −(e−
εi1−v1
1−ρ̃ + e−

εj2
1−ρ̃ )1−ρ̃

dudw =

(
1− exp

(
v1 − v2

1− ρ̃

))(
e−

εi1
1−ρ̃ + e−

εj2+v2
1−ρ̃

)1−ρ̃
e−

εi1
1−ρ̃

(
e−

εi1−v1
1−ρ̃ + e−

εj2
1−ρ̃

)1−ρ̃
e−

εj1
1−ρ̃dεi1dεj2

the integral becomes

1

1− exp
(
v1−v2
1−ρ̃

) ∫ 0

−∞

∫ exp(−v2)w

exp(−v1)w

exp(u+ w)dudw

Taking the interior integral,

1

1− exp(v1−v2
1−ρ̃ )

∫ 0

−∞
exp((e−v2 + 1)w)− exp((e−v1 + 1)w)dw
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Taking the second integral,

1

1− exp(v1−v2
1−ρ̃ )

(
1

1 + e−v2
− 1

1 + e−v1

)
This represents the share of w̃ij + w̃ji people that move from i to j. The expression for

the other direction can be found by switching v1 for −v1 and v2 for −v2.

We are interested in the amount of migration there would have been had we been in

a steady-state at v2, since it is steady-state migration that pins down the parameters of

w̃ij and, more importantly, the cross-elasticities of population. This is given by

mss
ij = (1− ρ̃)

ev2

(1 + ev2)2

Given

mij =
1

1− exp(v1−v2
1−ρ̃ )

(
1

1 + e−v2
− 1

1 + e−v1

)
mji =

1

1− exp(v2−v1
1−ρ̃ )

(
1

1 + e−v1
− 1

1 + e−v2

)
which we observe in the data, and a calibrated 1 − ρ̃, we can solve for v2, and therefore

find mss
ij .

Note that
mij
mji

= exp
(
v2−v1
1−ρ̃

)
. So e−v1 = e−v2(mij/mji)

1−ρ̃. Then

mij =
1

1−mji/mij

(
1

1 + e−v2
− 1

1 + e−v2(mij/mji)1−ρ̃

)
Simplifying,

mij −mji =
e−v2((mij/mji)

1−ρ̃ − 1)

(1 + e−v2)(1 + e−v2(mij/mji)1−ρ̃)

At this point, we could solve a quadratic equation for e−v2 and plug that into mss
ij .

39

However, there is not much economic intuition in that solution, so here we also consider

39In particular, e−v2 = −b−
√
b2−4ac

2a where

a = (mij −mji)(mij/mji)
1−ρ̃

b = (mij −mji) + (mij −mji)(mij/mji)
1−ρ̃ − (mij/mji)

1−ρ̃ + 1

c = mij −mji

and mss
ij = (1 − ρ̃) e−v2

(1+e−v2 )2
. Note that the other root of the quadratic equation gives you e−v1 , which

without loss of generality, we had assumed to be larger.
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Figure A4: Bilateral migration outside of steady-state

an approximation when ρ̃ ≈ 1. In particular, we can rearrange the equation to be

mij −mji(
(mji/mij)1−ρ̃−1

1−ρ̃

) = mss
ij

1 + e−v2

1 + e−v2(mji/mij)1−ρ̃

If we take the limit of both sides as ρ̃→ 1, then

mij −mji

log(mij/mji)
= lim

ρ̃→1
mss
ij

So when ρ̃ ≈ 1, the logarithmic mean of the migrations is a good approximation of the

steady-state migration.

In Figure A4, we plot mss
ij along with mij and mji, and several candidate approxi-

mations. To create this figure, we calculate mij, mji and mss
ij using the formulae above,

assuming that v1 = 0 and that v2 ranges from -0.25 to 0.25. This implies that the period

1 populations are 0.5 in both i and j, and each population ranges from about 0.45 to 0.55

in period 2. We then plot the logarithmic, the arithmetic, and the geometric average of

mij and mji for each value of v2, to be able to compare how good of an approximation

each one is. The logarithmic approximation is visually indistinguishable from the true

mss
ij . The other two are good approximations if v2 ≈ 0, but there are sizable gaps for

larger v2.
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