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Abstract

What is the correct interpretation of average moving costs? I show that
in the steady-state of a standard moving cost model, average moving costs are
proportional to the difference between the Shannon entropy of next period’s
location and the Shannon information of staying in the same location. Therefore,
moving costs are correctly interpreted as a statistic about the modeler’s lack of
information regarding future moves, but not about the actual cost of moving
in the real world. This alternative interpretation helps make sense of the wide
range of moving costs in the literature.
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Many papers in economics estimate the average cost of moving to be quite large,

often several times annual household income (Kennan and Walker, 2011; Bryan and

Morten, 2019).1 This may seem implausibly large when compared to actual expenses

associated with a move. However, others have noted that these migration costs could

reflect other frictions, too, and that if they explicitly model these other frictions, then

estimated moving costs fall (Schmutz and Sidibé, 2019; Porcher, 2020; Heise and Porzio,

2022; Giannone, Li, Paixao and Pang, 2023).2

Jia, Molloy, Smith and Wozniak (2023), a review article in the Journal of Economic

Literature, summarizes it as, “while unobserved and potentially very large costs might

help explain migration rates that are low relative to the potential earnings gains from

migration, different models imply substantively different estimates of the size of these

costs.”

In this paper, I propose a different way to think about these estimated moving

costs. I show that average moving costs are a measure of the modeler’s information

about future locations. A corollary to this interpretation is that estimated moving

costs depend on arbitrary decisions of the modeler, such as the time period or the

geographic partition. This corollary rules out a literal interpretation of moving costs

and makes the debate about the size of these costs somewhat moot.

To establish my interpretation, I show algebraically that in the steady-state of a

standard moving cost model, moving costs are proportional to the average Shannon

entropy of next period’s location minus the Shannon information of next period’s lo-

cation being the same as the current location.3 In other words, moving costs are a

measure of information: specifically, how surprised the modeler is by the agent’s future

location compared to the agent not moving.

Based on this result, I show that moving costs are sensitive to seemingly arbitrary

assumptions that the modeler makes about how to partition geographies or the length

of a time period. They are also sensitive to the modeler’s information about the people

in the model. For example, knowing the birthplace of each person leads the modeler

to estimate smaller moving costs. I give examples of the ways these arbitrary decisions

1In Table 2, I show a range of large moving cost estimates in the literature.
2Perhaps because of this debate, the literature that uses moving costs in their models is much

larger than the number of papers that report moving costs as a main outcome. For example, Caliendo,
Dvorkin and Parro (2019) has a similar model that would imply similarly sized moving costs, but
develops solution techniques that do not require backing out the moving cost parameters. Schubert
(2021) does not report the average moving cost, but does consider counterfactuals in which the moving
costs change.

3The concepts of Shannon entropy and Shannon information were developed in Shannon (1948).
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affect moving costs using data from the 2000 Census and the American Community

Survey. Because none of these modeling choices affects the actual decisions of people

on the margin of moving, I argue that interpreting moving costs literally is a mistake.

However, that does not mean moving costs are uninteresting. Given the formulae I

provide, one can interpret moving costs as a measure of the information of the modeler.

So comparing moving costs across models is informative of how good those models are

at predicting future locations. This alternative interpretation makes sense of some

recent results, specifically that richer models of moving—which typically incorporate

more information—exhibit smaller moving costs (Zerecero, 2021; Giannone et al., 2023;

Heise and Porzio, 2022; Porcher, 2020; Schmutz and Sidibé, 2019).

Of course, if the standard moving cost model were the true model of the world,

then moving costs could be interpreted both in the way I describe here and also as

a literal average moving cost. Therefore, my argument that migration costs should

not be taken literally implies that the standard moving cost model is misspecified. To

conclude the paper, I focus on the i.i.d. preference shocks in the model and argue that

these are the source of the misspecification. Relaxing this assumption may allow future

migration models to estimate true average moving costs.

Besides the literature that uses moving costs in their models, which I will discuss

in detail in Section 3, this paper also has some similarities to the literature that relates

discrete choice models to generalized entropy (e.g. Jose, Nau and Winkler, 2008; Fos-

gerau and de Palma, 2016). These papers argue there is an equivalence between utility

maximization and entropy minimization in discrete choice models. To my knowledge,

while this literature describes many interesting relationships between utility maximiza-

tion and entropy, no one has related the estimated moving costs to entropy as I do

here.4 The key assumption that allows me to show my interpretation of moving costs

is that I focus on a setting with a steady-state, where changes in the utility net of

preference shocks and moving costs will cancel out.

4Porcher (2020) is perhaps the closest paper to this one, in that it has to do with both Shannon
entropy and internal migration. That paper assumes rationally inattentive agents, and a typical result
in rational inattention is that the costs that agents have to pay is related to the Shannon entropy of
the information they acquire. This is equivalent to a discrete choice problem (Matějka and McKay,
2015). However, there is a huge difference between Porcher (2020) and this paper because this paper
emphasizes the moving costs as a measure of the modeler’s lack of information, whereas that paper
emphasizes that agents’ lack of information can look like moving costs.
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1 Standard moving cost model

In this section, I use the standard moving cost model to derive an interpretable expres-

sion for average steady-state moving costs. In this model, agents choose their location

to maximize the present value of their utility. As part of that utility, they face moving

costs and they draw i.i.d. extreme value shocks for each location each period that

induce some of them to move and some of them to stay.5

There is a continuum of people indexed by n that live in discrete locations indexed

by i. Time is also discrete and is indexed by t. The population of people living in i

at time t is denoted by pit. The share of people in j who move from j to i at time t

is denoted mj→i,t.
6 mjt denotes the total outmigration from j to all locations i ̸= j

at time t. When referring to steady-states, the t index is dropped. Moving costs are

bilateral between two locations, so δji refers to the moving cost from j to i. I assume

there is no cost to not-moving, i.e. δii = 0. I will use the notation Ei to refer to the

population-weighted average across locations. I will use the notation Em to refer to the

migration-weighted average. I will be particularly interested in the average migration

cost, which we define to be δ̄ ≡ Em[δji].

In the main paper, I assume agents are homogeneous except for their location. I

relax this assumption in Appendix A.

Agents maximize the present value of utility, represented by this value function:

Vnt(j) = max
i

logwit + ait − δji +
1

µ
ϵint + βEVnt+1(i)

where wit is the (real) wage, ait is the amenities in i, δji is the moving cost from j to i,

ϵint is a time-person-location i.i.d. extreme value shock. β is the discount factor, and

µ is a scale parameter, which governs the elasticity of substitution between places.

Define vit ≡ logwit + ait + βEVnt+1(i). Then the migration rate is given by

mj→i,t =
exp(µ(vit − δji))∑
k exp(µ(vkt − δjk))

5Some versions of the standard model include the i.i.d. extreme value shocks as part of the moving
costs. For example, Kennan and Walker (2011) models moving costs this way. They report average
moving costs for all possible moves, but report moving costs paid by actual movers that are much
lower, in fact negative. However, their most well-known statistic is measured similarly to the statistic
I consider below: “For the average mover, the cost is about $312,000 (in 2010 dollars) if the payoff
shocks are ignored” (Kennan and Walker, 2011, p. 232).

6Based on this notation, mi→i,t will refer to the non-migration rate in i.
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Because δii is normalized to zero, I can derive the following expression for δji:

δji = vit − vjt −
1

µ
logmj→i,t +

1

µ
logmj→j,t (1)

Intuitively, moving costs are decreasing in migration. Consider the migration-weighted

average moving cost in the steady-state of the model:

δ̄ ≡ Em[δij] =

∑
i,j:i ̸=j pimi→jδij∑
i,j:i ̸=j pimi→j

Plugging in (1),

δ̄ =
1

1−
∑

i pimi→i

∑
i.j:i ̸=j

pimi→j

(
− 1

µ
logmi→j +

1

µ
logmi→i

)

Note that in steady-state, the vit and the vjt’s all cancel out because
∑

k pkmk→i =∑
k pimi→k. The steady-state assumption is a key assumption that allows my inter-

pretation, and which is why my results do not extend to more-general discrete choice

models.7 Rearranging,8

δ̄ =
1

1−
∑

i pimi→i

1

µ

∑
i

pi

(
−
∑
j

[mi→j logmi→j] + logmi→i

)

Recall that I defined mi ≡
∑

j:j ̸=i mi→j to be the total outmigration from i. Then

δ̄ =
1

Eimi

1

µ
Ei [H(j|i)− I(j = i)] (2)

where H(j|i) is the Shannon entropy of a person’s location next period, given their

7Of course, when I calibrate the model using the data from any given year, the model is not in
steady-state. However, in Appendix A, I show that if the model is not in steady-state, the main
equations (2) and (3), are very similar, but with one additional term that represents the average
gain from migration net of moving costs and idiosynchratic shocks. When I take it to the data, it is
quantitatively negligible, about 0.4 percent the size of the steady-state terms I focus on. Intuitively,
one of the reasons this term is so small is because gross migration is much larger than net migration
(Jia et al., 2023).

8To derive this expression from the one above, note that
∑

j ̸=i mi→j logmi→ı = (1 −
mi→i) logmi→i. The −mi→i logmi→i term is then moved into the other term so that the sum is
over all j, and not just j ̸= i. This leaves the logmi→i term outside the summation.
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location this period, and I(j = i) is the Shannon information of not moving.9 Ei refers

to the population-weighted average across states. The term within the expectation can

be thought of as the difference between the Shannon entropy of the future location and

the Shannon information of not moving.

An informal way to understand Shannon information is that it measures how sur-

prising an event is. Since most people do not move, the event of not moving is un-

surprising, and the Shannon information of not moving is small. Shannon entropy

measures the expected Shannon information. So if it is very hard to predict where

people will live next period, then the Shannon entropy will be large.

Another way to think about Shannon entropy is that Shannon entropy is approxi-

mately proportional to the number of “yes or no” questions one would have to ask in

order to acquire the information, i.e. the number of bits the information contains.10 So

H(j|i) is proportional to the bits of information that you would need to communicate

where a person currently in i will choose to live next.

Kennan and Walker (2011) and subsequent papers often express moving costs in

dollar terms instead of utility. Since wages are in logs in the model setup, one can

interpret these average moving costs as a percent of wages.11 Therefore, one might

think of moving costs as a measure of the expected Shannon information minus the

Shannon information in the event of not moving, where each bit of information “costs”
w

µ log 2
dollars per migrant.

In addition to the previous result of equation (2), I can alternatively relate the av-

erage moving cost to the Shannon entropy of future locations conditional on migrating.

Define m∗
i→j =

mi→j

mi
to be the probability of moving to j, conditional on moving at all.

9For a set of mutually exclusive events i ∈ I, Shannon entropy is defined as

H(i) = −
∑
i∈I

πi log πi

where πi is the probability of each possible i. Shannon information of an event with probability πi is
given by

I(i) = − log πi

Note that Shannon entropy is the ex ante expectation of Shannon information.
10This is an approximation because Shannon entropy is a continuous measure. It also has to be

scaled by log 2 to convert the units of Shannon entropy into bits.
11Kennan and Walker (2011) actually expresses utility in dollar terms directly, so there is no need

for this adjustment. However, much of the subsequent literature does express wages in logs.
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Then, another way to express the same average moving cost is:

δ̄ =
1∑

i pimi

1

µ

∑
i

pimi

(
−
∑
j ̸=i

[m∗
i→j logm

∗
i→j]− logmi + log(1−mi)

)

So

δ̄ =
1

µ
Em [H(j|i, i ̸= j) + I(j ̸= i)− I(j = i)] (3)

where H(j|i, i ̸= j) is the Shannon entropy of tomorrow’s location, given today’s

location, and that tomorrow’s location is not the same as today’s location; I(j ̸= i) is

the information content of moving anywhere, and I(j = i) is the information content

of staying. Em signifies that the average for this equation is weighted based on the

number of migrants, not the total population as in equation (2).

Therefore, the average moving cost is proportional to the difference in the informa-

tion of moving, plus the entropy of location conditional on moving, and the information

of not moving. Each bit of expected information “costs” 1
µ log 2

w per migrant.

Based on these formulations, I make three observations:12

Observation 1. Average moving costs depend on the modeler’s choice of length of the

time period.

Over short time horizons, the Shannon entropy, conditional on moving, does not

vary much. Whether I look at 1 year or 5 years, the percentage of migrants from state

i moving to state j, m∗
i→j is roughly constant. However, migration rates are smaller

for shorter time horizons. So based on equation (3), average moving costs will vary

with the time period chosen as the second term, I(j ̸= i) − I(j = i) = log 1−mi

mi
, will

increase when time horizons are short. In fact, as time horizons get arbitrarily short,

estimated average moving costs will get arbitrarily large.13

Observation 2. Average moving costs depend on the modeler’s choice of geographic

partition.

12The first two observations are highly related to the i.i.d. assumption of the preference shocks,
i.e. that they are uncorrelated from period-to-period, and from place-to-place. I return to this point
in Section 3.

13When we express migration costs in utility terms, one might be worried that the correct way to
interpret those costs also depend on the time horizon. For example, when I convert to dollar terms,
and I consider five-year time periods, we will calibrate w to five times the yearly wage, but when I
consider one-year time periods, I will calibrate w to the yearly wage. However, unless migration over
time horizon t is proportional to exp(t), this will not cancel. In the data, it is closer to proportional
to

√
t (Howard and Shao, 2022).
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The Shannon entropy of next period’s location depends on how the modeler par-

titions geography. Generally, the more locations there are, the harder it is to predict

exactly which one any given person will end up in. Therefore, one would expect that

Shannon entropy would increase in the number of locations.14 Mechanically, migration

rates also increase in the number of locations. As far as I know, there is no way to

order geographies such that estimated migration costs must increase or decrease, but

in the empirical results, I show that the Shannon entropy change dominates the change

in the information of not moving when I apply it to states versus migration public use

microdata areas (MIGPUMAs). Certainly, there is no reason to expect the change in

Shannon entropy and the change in migration rates to cancel out.

In fact, let us consider two silly examples to show that moving costs can be estimated

to be very large or very small depending on the partition. In the first case, consider

partitioning every house into its own geography. In the 2000 Census, 43 percent of

people moved houses in the previous 5 years. But the Shannon entropy conditional

on moving is enormous because it is almost impossible to predict the exact house that

anyone would live in. So based on equation (3), we would have an enormous number

plus log(57/43). Just to put a number on it, we can assume that modeler can assign

no individual house a probability of being chosen of greater than 0.1 percent. Then a

lower bound on this enormous number would be − log 1
1000

+ log 57
43

≈ 7.2.

Alternatively, we could partition the United States into houses with an even-

numbered address and ones with an odd-numbered address. If we assume that it

is random which type of house you move into, we would expect 21.5 percent of the

population to be “moving regions” each year. But conditional on moving, the Shannon

entropy is zero. So the estimated average moving cost would be log 78.5
21.5

≈ 1.3.

Observation 3. Average moving costs depend on the modeler’s information set.

Suppose the modeler knew some immutable characteristic about people, denoted

by s, such as their race or their birthplace. If they estimate separate moving costs by

this characteristic, then equation (2) becomes

δ̄s =
1

Eismis

1

µ
Eis [H(j|i, s)− I(j = i|s)] (4)

Shannon entropy is convex, and Shannon information is concave, so by Jensen’s in-

14This does not have to be true in all cases, if the more precise location is extremely informative
of which locations the person is likely to move to.
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equality, Eis[H(j|i, s) − I(j = i|s)] ≤ EiH(j|i) − I(j = i)]. Since Eismis = Eimi, the

whole quantity, δ̄s is weakly smaller that δ̄. And if s provides any information about

the next periods’ location, then the inequality will be strict.

This is also true from some characteristics of a person that are not immutable.

For example, if the modeler modeled the decision making process in two stages where,

first, each person came up with a consideration set, and second, compared the utilities

available in each, s could be the consideration set.15 In this setup, I can still derive

formula (4).16 So in a model with consideration sets, the modeler will estimate lower

moving costs than in a model without consideration sets.

In the limit, if the modeler could perfectly predict everyone’s next period location

(e.g. s = j), then moving costs would be reduced to negative infinity. This is because

not moving would be an infinitely large surprise for someone they knew was moving.

2 Moving cost calibrations with data

In this section, I take the observations from the last section and illustrate them using

real world data.

In particular, I will estimate the average moving costs using equation (2) with data,

using the Census and the American Community Survey from 2000 (Ruggles, Flood,

Sobek, Brockman, Cooper, Richards and Schouweiler, 2023).17 For each state-pair, I

calculate mi→j as the share of people who lived in state i that moved to state j, either

from 1995 to 2000 in the Census, or from 1999 to 2000 in the ACS. I also calculate

mi→j,b, where I calculate the probability of moving from i to j given a birthplace b.

And I also calculate mi→j where i and j are MIGPUMAs instead of states.18

I then calibrate the average moving costs according to equation (2), assuming µ = 1.

15As this example illustrates, the characteristic s does not need to be measured in the data. It can
be something the modeler can only see with the model.

16While immutable characteristics and consideration sets do not break the main results, this is
not true of all possible characteristics. In Appendix A, I add a general state variable to each person,
which can affect their migration costs and location utilities. In general, I show that migration costs
are the sum of two terms: one which is the difference between the Shannon entropy of next period’s
location and the Shannon information of not moving, and one that represents the average gain from
moving net of migration costs and idiosynchratic shocks. In these two examples, that second term is
zero, but that does not need to generally be true.

17This is the only year, to my knowledge in which similar surveys asked about the 1-year migration
rate (the ACS) and the 5-year migration rate (the Census).

18MIGPUMA stands for Migration Public Use Microdata Area, and is a within-state region with
at least 100,000 people.
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Table 1: Estimated Moving Costs for Different Datasets

Shannon Migration Estimated Cost
Entropy Rate Moving Cost in $1000’s

1 year, states 0.182 0.024 6.692 315
5 year, states 0.561 0.085 5.585 1312
5 year, states (modeler knows birthplace) 0.512 0.085 4.981 1171
5 year, MIGPUMAs 1.231 0.173 5.983 1406

Notes: All datasets are from 2000. 1 year migration uses migration measured over 1 year from the
ACS. 5 year migration uses migration measured over 5 years from the Census. The unit of geography
is a state or a MIGPUMA, a subset of a state with at least 100,000 people in it. Birthplace is an
indicator variable either for the state of birth or for being from anywhere outside the 51 U.S. states.
The median household income in 2000 (for people also living in the U.S. in 1995) was $47,000, so for
1-year migration, the last column is that times the estimated moving cost. For 5-year migration, the
last column is $47,000 times five times the estimated moving cost.

In the literature, there is little consensus on what µ is, and some good arguments that

typical methods have not estimated it well (Borusyak, Dix-Carneiro and Kovak, 2022),

so I use µ = 1 not because I believe that but because it is easy for the reader to scale

the moving costs by whatever µ they prefer.19 The comparisons of results are intuitive.

In the 1 year calibration, I estimate moving costs of 6.7 log points, or when converted

to dollars, $315,000. This is not too different from Kennan and Walker (2011), who

estimated moving costs of $312,000 (p. 232).20

In the 5 year calibration, I estimate smaller moving costs in utility terms because

many more people are moving: 5.6 log points. In dollars, this number is larger—$1.31
million—because I multiply by five years of wages instead of one.

If the modeler knows the birthplace, the entropy decreases since birthplace is a

helpful predictor of future location choices. Compared to the 5 year calibration where

the modeler does not know birthplace, the moving cost is even lower: 5.0 log points

($1.17 million). This is consistent with Zerecero (2021) who finds lower estimated

19Borusyak et al. (2022) makes the point that regressing the change in population on labor demand
shocks—even well-identified labor demand shocks—does not identify µ because the shocks are typically
highly correlated across space, and therefore affect both origin and destination locations for many
migrants. They suggest a non-linear least squares estimation instead.

20The fact that these are only $3000 different is mostly a coincidence. Kennan and Walker (2011)
is using 2010 dollars, while I use 2000 dollars, and the model in Kennan and Walker (2011) is much
richer. They also explicitly model the elasticity of migration, which in their paper is a semi-elasticity
since they have linear utility in consumption.
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moving costs in a model with birthplace.

Finally, if I use MIGPUMAs instead of states, it is much harder to predict future

locations, since MIGPUMAs are a finer geography. The moving costs increase by about

0.4 when I use MIGPUMAs instead of states, to 6.0 log points ($1.41 million).

3 Discussion

3.1 How should moving costs be interpreted?

Is there one of these moving costs that is more “correct” than the other ones? No.

The differences depend on arbitrary choices made by the modeler. Even very natural

choices, such as MIGPUMAs vs. states, 1-year vs. 5-year, and whether to include

information on birthplace lead to large differences in estimated migration costs, of

about half a log-point or more. As I showed in Section 1, if the modeler makes even

less “normal” assumptions, the migration costs could diverge to infinity or negative

infinity.

Because these arbitrary decisions affect the estimated moving cost, it therefore

cannot be a reasonable measure of the actual cost of moving.
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So how should a reader interpret reported moving costs in an economics paper?

They should not try to gauge if the moving cost is big or small compared to their prior

on how expensive it is to move. It is also not that useful to compare it to the perceived

benefits of moving, as many papers in the literature do.21 However, they may want

to compare the moving costs to other papers or other model specifications, as I do in

Table 2.22 These comparisons can give a sense of how much information the model

has. The larger the average moving cost, the less the model is able to predict where

people will be in the next period, relative to the information of staying in place.

For example, Zerecero (2021) estimates a model that includes a bias for living in

one’s birthplace and finds that it features smaller moving costs than a model that does

not. This reflects an increase in the information the modeler has to predict future

locations. The Shannon entropy, i.e. the average amount the modeler is surprised

by any particular location choice, is smaller when they already know the person’s

birthplace. While it is a less direct comparison, Giannone et al. (2023) compares their

estimated migration costs to the migration costs in Kennan and Walker (2011), and

argues their new costs are lower because they include wealth in their model. This claim

is consistent with wealth being an important piece of information about future location

choices and the likelihood of moving.23

Other models also reduce the estimated moving cost by including features that help

predict migration. For example, Heise and Porzio (2022) considers job search, where

migration is more likely to occur conditional on a job offer, and Porcher (2020) considers

rational inattention. Through the lens of my interpretation, prior to the decision to

move, the modeler learns some information—either the agent gets a job offer (Heise

and Porzio, 2022)24 or they pick their optimal signal at a cost (Porcher, 2020). From

21One caveat is if the model features a rich state space, with large average gains to moving net of
migration costs and idiosynchratic shocks. When these terms are big compared to the information
terms I focus on in this paper, this comparison is more apt.

22To include a paper in this table, I required the paper to report an average moving cost in
some sort of interpretable units and to use extreme value shocks. Papers such as Bishop (2012) and
Oswald (2019) report a moving cost function, and seem to have moving costs in the same ballpark
as Kennan and Walker (2011), but do not report average costs. Bartik and Rinz (2018), which does
report an average moving cost of $683,000, features shocks that are not extreme value, so I am less
able to compare the size of the shocks across papers. Similarly, Bayer and Juessen (2012) also does
not feature extreme value shocks, so the moving costs are not exactly a measure of information.
Nonetheless, Bayer and Juessen (2012) does estimate substantially smaller moving costs ($34,248),
likely because they incorporate information about migrants persistent preferences over locations.

23Giannone et al. (2023) and Kennan and Walker (2011) also differ in their geographies and timing,
so the information effect of wealth is not the only difference between the two papers.

24Schmutz and Sidibé (2019) has many similar features to Heise and Porzio (2022), but does not
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the perspective of the modeler, this information helps predict where the agents are

going to move to, lowering the Shannon entropy. Consistent with my interpretation,

the estimated moving costs in these models are much lower.25 Porcher (2020) estimates

a model without his information frictions and finds the migration costs are 40 percent

higher.

3.2 Is the standard model misspecified?

Of course, if the standard moving cost model were the true model of the world, then

migration costs could also be interpreted literally, in addition to the interpretation I

gave above. But in Section 1, I argued that arbitrary choices of the modeler played a

large role in determining moving costs. If both of these things are true, it must be the

standard moving cost model is somehow misspecified.

Here, I argue that the source of this misspecification is the assumption that the

preference shocks are i.i.d. This assumption is clearly unrealistic because it relies on

there being no spatial correlation or persistence in the unobserved reasons that people

choose locations.

To see this direct connection, suppose that the standard moving cost model was

true, but that the researcher assumes that people draw i.i.d. shocks at the wrong

frequency, i.e. every year rather than every five years. Then the researcher incorrectly

assumes that in a five-year period, each agent has five draws in which they could get a

high enough shock in order to move, whereas in truth, they only get one draw. When

moving is rare, this means that for the same migration costs, the researcher would

assume about five times more people move using the one-year model than the five-year

model. So to match the data, they would infer higher moving costs for the five year

model.

include a random utility shock. Through the lens of my framework, µ → ∞ in their model, meaning
that the modeler has all the information they need to know whether a person will move or not, based
on the job offer received and the other state variables. What this means is that moving costs only
reflect the average increase in utility from moving, as in the formula in Appendix A.

25In Heise and Porzio (2022), I cannot directly apply the formulas in equations (2) and (3) because
these models feature additional state variables for the agents. This means that the vit−vjt term from
equation (1) will not cancel out. The correct formulas for when there are state variables can be found
in Appendix A, and these formulas include an additional term that represents the average utility gain
from migration, net of moving costs and idiosynchratic shocks. I expect this additional term would be
positive when migration also coincides with a job offer as in Heise and Porzio (2022). So this would
actually lead to higher moving costs if there were no change in the modeler’s information. Therefore,
the decline in migration costs actually understates the improvement in the modeler’s information.
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A similar argument can be made for subgeographies: if a researcher assumes agents

get an independent shock for every MIGPUMA, then they will have to assume higher

moving costs than if they assume one shock for the whole state in order to match the

same amount of migration in the data.26

However, if the researcher relaxed the i.i.d. assumption and instead assumed the

shocks were highly correlated across time and space, then this argument would break

down because the maximum of several random variables is not that different than the

average, when the correlation is sufficiently high. A model with these correlations

would estimate moving costs that are not as sensitive to the length of time periods or

the size of geographies.

Allowing these correlations could also make the model less dependent on the infor-

mation set of the modeler. For example, knowing the birthplace of an agent means that

the modeler is able to predict that the agent will have a larger preference for living near

their birthplace, in all time periods. Effectively, the birthplace is inducing a spatial

and temporal correlation in the agents’ match-specific preferences. If the correlation

structure imposed by the modeler were rich enough, it might not matter if the modeler

actually knew the agents’ birthplaces or not.

Trying to get an estimate of “true” moving costs, that are not sensitive to timing

and geographic assumptions, would require a model with both geographic and temporal

correlation in location-person-match-specific preferences. This would be an interesting

direction for future research.

4 Conclusion

Many people think of moving costs as a black box, since it is supposed to be a stand-

in for many things that a modeler might not observe: information frictions, job and

housing search, psychological costs of relocating, and, of course, the actual monetary

costs of moving. In this paper, I provide an alternative but related interpretation:

average moving costs measure the size of the black box: moving costs are closely

related to how little information is in the model about future locations.

Specifically, I show that the moving costs that are estimated by moving cost models

measure the average Shannon entropy of next period’s location minus the Shannon

26This point is acknowledged in Kennan and Walker (2011). However, they dismiss it by saying
that the choice of whether to consider more preference shocks for populous states or lower moving
costs does not affect their results on income, which was the original motivation of their paper.

15



information of not moving. This measure is sensitive to seemingly-arbitrary choices of

the economic modeler, and so I argue that it is not a good measure of actual moving

costs. But what it does measure is nonetheless interesting, and helps us understand

some of the various measures of moving costs in the literature.
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A Extensions to the model

Consider an extension to the standard moving cost model, in which agents have a

state s that affects their payoffs and moving costs. s is multidimensional, and it is a

function of both the previous s, the location choice i, and a random variable X. This

is a general setup so that s could include age, the history of past locations, job status

and wages, etc.

With the state variable, utility is now represented by this value function:

Vnt(j, s) = max
i

logwit(s) + ait(s)− δji(s) +
1

µ
ϵint + βEVnt+1(i, s

′(s, i,X))

where wit(s) is the (real) wage, ait(s) is the amenities in i, δji(s) is the moving cost

from j to i, and ϵint is an i.i.d. extreme value shock. µ is a scale parameter, which

governs the elasticity of substitution between places.

Define vit(j, s) ≡ logwit(s)+ait(s)+βEVnt+1(i, s
′(s, i,X)). Then migration is given

by

mj→i,t(s) =
exp(µ(vit(j, s)− δji(s)))∑
k exp(µ(vkt(j, s)− δjk(s)))

Again, I normalize δii(s) = 0, so the δji(s) is then

δji(s) = vit(j, s)− vjt(j, s)−
1

µ
logmj→i,t(s) +

1

µ
logmj→j,t(s)

Consider the migration-weighted average moving cost in the steady-state of the

model:

δ̄ ≡
∑

s,i,j:i ̸=j pi(s)mi→j(s)δij(s)∑
s,i,j:i ̸=j pi(s)mi→j(s)

=
1

1−
∑

i,s pi(s)mi→i(s)

∑
s,i.j:i ̸=j

pi(s)mi→j,t(s)

(
− 1

µ
logmi→j,t(s) +

1

µ
logmi→i,t(s)

)
+

1∑
s,i,j:i ̸=j pi(s)mi→j(s)

∑
s,i,j:i ̸=j

pi(s)mi→j,t(s)(vit(j, s)− vjt(j, s))
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Rearranging,27

δ̄ =
1

1−
∑

i pi(s)mi→i(s)

1

µ

∑
i

pi(s)

(
−
∑
j

[mi→j(s) logmi→j(s)] + logmi→i(s)

)
+ Em

ijs(vit(j, s)− vjt(j, s))

Define mi ≡
∑

j:j ̸=imi→j to be the total outmigration from i. Then

δ̄ =
1

Eismi(s)

1

µ
Eis [H(j|i, s) + I(j = i|s)] + Em

s [vit(j, s)− vjt(j, s)] (5)

The first term is the same as before, except now the entropy and the information

are both conditional on s. The δ is averaged across all s. The second term is the

average gain in utility for migrants, net of moving costs and idiosynchratic shocks.

The expectation Em
s is the average, weighted by the number of migrants of type s

moving from i to j.

In this more general setup, average moving costs are the sum of two components:

the first is still a measure of the Shannon entropy from the perspective of the modeler

minus the Shannon information of not-moving; and the second is the average gains

from migration.

In the main text, the second term drops out because there are not average gains to

migration. This is because the continuation value is the same for everyone, conditional

on location, and I assumed the model was in steady-state, which meant that the same

number of people moved into and out of each location.

If I drop the steady-state assumption, but assume there are no additional s states,

then

δ̄ =
1

Eimi

1

µ
Ei [H(j|i) + I(j = i)] + Em[vit(j)− vjt(j)] (6)

the first term is the same as in the main part of the paper, and the second term is the

additional utility gains from the fact that there is net migration to better places. The

second term is almost always positive and it is small when differences in utility across

space are small or when gross migration is much larger than net migration.

In fact, I can numerically show that they are small. If I assume average moving

costs into and out of every location are equal: i.e.
∑

mi→jδij =
∑

mi→jδji, I can

put a number on these average gains from migration net of moving costs and the

27Note that
∑

j ̸=i mi→j = 1−mi→i.
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idiosynchratic utility.28 This assumption allows me to set up a system of two equations

and two unknowns relating
∑

j ̸=i mi→j(vit − vjt) and
∑

j ̸=i mi→jδij, based on equation

1. Solving, the average gain from migration is given by:

1

µ

∑
i,j,i̸=j

pimi→j log

(
mi→j

mj→i

mj→j

mi→i

)

In the data, and with µ = 1, this number is about 0.022. This is about 0.4 percent of

the size of the information term (see Table 1). So at least in the standard model, the

steady-state assumption was not quantitatively affecting my results.

There are several other scenarios in which the average gain in utility for migrants

is zero, and the term drops out, two of which I discuss in the main text.

The first is if s is immutable: i.e. s′ = s, and I maintain the steady-state assump-

tion. s being immutable means I can rewrite vit(j, s) ≡ vits, i.e. the continuation value

does not depend on j. And because the model is in steady-state, the number of people

of type s moving into i is cancelled out by the number of people of type s moving out

of i. So the average gains from migration term drops out:

δ̄ =
1

Eismi(s)

1

µ
Eis [H(j|i, s) + I(j = i|s)]

Another straightforward example is if vit(j, s) does not depend on j or s, e.g. s

governs the contemporaneous moving costs, but nothing else. This could be the case

if, at the start of each period, each agent drew a random consideration set, which is

represented by s. But once they moved to the new region, they looked just like anyone

else there.

In general, however, adding the state to the model leads to the possibility that

there are average gains to in utility for migrants. Examples of s that would matter are

if s equals the history of past locations, age, or employment status. I would expect

these to be positive because migrants will tend to move to places with higher utility

for themselves.

28I cannot assume δij = δji for every i and j because it overidentifies the data. With states, there
would be 51× 51 migration data points, but only 51 vi’s and

51×50
2 δij ’s to identify them with.
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