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Abstract

The internal migration literature typically estimates average mov-
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a standard model, average moving costs are proportional to the Shan-
non entropy of next period’s location minus the Shannon information
of staying in the same location. Therefore, average moving costs are
a helpful statistic about the model’s predictive power regarding future
moves but are not invariant to seemingly innocuous choices of the mod-
eler. This new interpretation makes sense of the range of moving costs
in the literature.
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Many papers in economics estimate the average moving cost to be large,

often several times annual household income (Kennan and Walker, 2011; Bryan

and Morten, 2019, etc.).1 This may seem implausibly large when compared

to actual expenses associated with a move. Others have noted that these

migration costs could reflect other frictions, and that if they explicitly model

these other frictions, then estimated moving costs fall (Schmutz and Sidibé,

2019; Porcher, 2020; Heise and Porzio, 2022; Giannone, Li, Paixao and Pang,

2023).2

Jia, Molloy, Smith and Wozniak (2023), a review article in the Journal

of Economic Literature, summarizes the state of the literature as, “while un-

observed and potentially very large costs might help explain migration rates

that are low relative to the potential earnings gains from migration, different

models imply substantively different estimates of the size of these costs.”3

In this paper, I propose a different way to think about these estimated

moving costs. I show that average moving costs are a measure of the model’s

predictive power for agents’ future locations. Specifically, I back out moving

costs from the observed migration patterns in the data, using formulae implied

by a standard moving cost model. I then show algebraically that in steady-

state, average moving costs are proportional to the average Shannon entropy of

next period’s location minus the Shannon information of next period’s location

being the same as the current location (Shannon, 1948). Shannon information

is a measure of how surprising an event is: the more unlikely it is to happen, the

more information it contains. Shannon entropy measures expected information

before the realization of the event. So my result is that moving costs measure

how surprised the modeler will be when they find out where an individual

1In Table 2, I show a range of large moving cost estimates in the literature.
2The literature that uses moving cost models is much larger than the papers that report

average moving costs as a main outcome. For example, the model in Caliendo, Dvorkin and
Parro (2019) would imply large moving costs, but they develop solution techniques that do
not require backing out the moving cost parameters. Another example is Schubert (2021),
which does not report the average moving cost, but does consider counterfactuals in which
the moving costs change.

3Other methodologies of uncovering migration costs also give various different results.
Koşar, Ransom and van der Klaauw (2022) uses a survey to the estimate the willingness to
pay to avoid moving, and estimates an average moving cost of $54,000.
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lives next year relative to their surprise if they find out that individual did not

move.4

Based on this result, I show that estimated moving costs change depending

on the time period or the geographic partition of the model. Additionally,

average costs are also sensitive to the modeler’s information set regarding the

agents. For example, knowing the birthplace of each person leads the modeler

to estimate smaller moving costs. I give examples of the ways these modeling

decisions affect average moving costs using data from the 2000 Census and the

American Community Survey.

However, that does not mean moving costs are uninteresting. In particular,

comparing moving costs across models is informative of how good those models

are at predicting future locations. This alternative interpretation makes sense

of some recent results, specifically that richer models of moving—which typ-

ically incorporate more information—exhibit smaller moving costs (Zerecero,

2021; Giannone et al., 2023; Heise and Porzio, 2022; Porcher, 2020; Schmutz

and Sidibé, 2019).

What is it about standard models that leads to this relationship between

moving costs and Shannon information? The critical assumption is the i.i.d.

extreme value shocks. The specific functional form is critical for generating

the exact Shannon entropy term. More importantly, the i.i.d. assumption is

what generates the dependence of estimated moving costs on the timing and

geography choices of the modeler. When the modeler makes these choices, they

are also making an explicit assumption of how much and how often agents are

given opportunities to move. A simple way to see this is that, absent any

moving costs, when agents draw new shocks more often or for more locations,

they will move more. So moving costs have to be higher to match the same

rate of migration in the data.5

4The modeler is not going to be surprised by aggregate migration flows, which they will
be able to match exactly in the data. Rather, this notion of surprise is for an individual’s
location choice, which depends on the realization of a random shock.

5The sensitivity of moving costs to these choices has been recognized in the literature
(e.g. footnote 12 from Kennan andWalker (2011)), but formalizing it via of Shannon entropy
is new.
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This paper speaks to the literature on estimates of migration costs, which

I discuss in detail in Section 3, as well as the quantitative migration literature

more generally. Importantly, my results on the sensitivity of migration costs

to modelers’ arbitrary choices mostly do not extend to the effects of a regional

shock or to policy counterfactuals, which is one of the main focuses of that

literature. The most common exception would be counterfactuals which reduce

moving costs by a percentage of the initial cost; since this counterfactual is

based on the measurement of moving costs, the results of this counterfactual

will also be sensitive to arbitrary choices of the modeler.

This paper has similarities to the literature that relates discrete choice

models to generalized entropy (e.g. Jose, Nau and Winkler, 2008; Fosgerau and

de Palma, 2016). These papers show an equivalence between utility maximiza-

tion and entropy minimization in discrete choice models. To my knowledge,

no one has related the estimated moving costs to entropy as I do here.6 The

key assumption that allows me to reach my interpretation of moving costs is

that I focus on a setting with a steady-state, where differences in the baseline

utilities of locations cancel out.7

The main result of this paper could also be extended to the international

trade literature, where it would relate average trade costs to the Shannon

entropy of a good’s destination minus the Shannon information of it being

consumed at home. This would hold if trade followed a gravity equation and

trade was balanced (the analog of the steady-state assumption in this paper). I

do not focus on this application because average trade costs are not commonly

reported, unlike migration costs.

6Porcher (2020) and Bertoli, Moraga and Guichard (2020) are perhaps the closest papers
to this one, in that they have to do with both Shannon entropy and migration. Those papers
assume rationally inattentive agents, and a typical assumption for rational inattention is
that the costs that agents have to pay is related to the Shannon entropy of the information
they acquire. This is equivalent to a discrete choice problem (Matějka and McKay, 2015).
However, there is a huge difference from this paper because this paper emphasizes the moving
costs as a measure of the modeler’s lack of information, whereas those paper emphasizes
that agents’ lack of information can look like moving costs.

7My interpretation may be helpful in the literature that estimates workers’ switching
costs across industries, as in Dix-Carneiro (2014), which estimates switching costs to be
greater than annual income.
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1 Standard moving cost model

In this section, I use the standard moving cost model to derive an interpretable

expression for average steady-state moving costs. In this model, agents choose

their location to maximize the present value of their utility. As part of that util-

ity, they face moving costs and draw independent and identically distributed

(i.i.d.) extreme value shocks for every location in every time period.8

There is a continuum of people indexed by n that live in discrete locations

indexed by i. Time is also discrete and is indexed by t. The population of

people living in i at time t is denoted by pit. The share of people in i who move

from i to j at time t is denoted mi→j,t.
9 mit denotes the total outmigration

share from i to all locations j ̸= i at time t. When referring to steady-states,

the t index is dropped. Moving costs are bilateral between two locations, so δij

refers to the moving cost from i to j. I assume there is no cost to not moving,

i.e. δii = 0 for all i. I use the notation Ei to refer to the population-weighted

average across locations and Em to refer to the migration-weighted average. I

will be particularly interested in the average migration cost, which we define

to be δ̄ ≡ Em[δij].

In this section, I assume agents are homogeneous except for their location.

I relax this assumption in Appendix A.

Agents maximize the present value of utility, represented by this value

function:

Vnt(i) = max
j

logwjt + ajt − δij +
1

µ
ϵjnt + βEVnt+1(j)

where wjt is the (real) wage, ajt is the amenities in j, δij is the moving cost

from i to j, and ϵjnt is a time-person-location i.i.d. extreme value shock. β is

8Some versions of the standard model, including Kennan and Walker (2011), assume the
i.i.d. extreme value shocks are part of the moving costs. When including the shocks as part
of moving costs, estimated average moving costs are negative. However, their most well-
known statistic does not include the shocks as part of the moving costs: “For the average
mover, the cost is about $312,000 (in 2010 dollars) if the payoff shocks are ignored” (Kennan
and Walker, 2011, p. 232).

9Based on this notation, mi→i,t will refer to the non-migration rate in i.
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the discount factor, and µ is a scale parameter, which governs the elasticity of

substitution between places.

Define vjt ≡ logwjt + ajt + βEVnt+1(j). Then the migration rate is given

by

mi→j,t =
exp(µ(vjt − δij))∑
k exp(µ(vkt − δik))

Because δii is normalized to zero, δij is given by the following expression:

δij = vjt − vit −
1

µ
logmi→j,t +

1

µ
logmi→i,t (1)

I focus on the following statistic which is often reported in papers in the

literature, the migration-weighted average moving cost:

δ̄ ≡ Em[δij] =

∑
i,j:i ̸=j pimi→jδij∑
i,j:i ̸=j pimi→j

The main proposition relates δ̄ to measures of information about future

locations. Before stating the proposition, it is helpful to define some additional

notation.

Define J to be a discrete random variable, which is the next period’s loca-

tion. Lower-case j will refer to specific realizations of J . I use the notation

H(J |i) to refer to the Shannon entropy of J for a person currently living in i,

and the notation I(j|i) to refer to the Shannon information of the realization

of J = j given i, i.e. migrating from i to j. Since mi→j is the migration

probability for someone living in i to move to j,

I(j|i) = − logmi→j

and

H(J |i) = −
∑
j

mi→j logmi→j

based on the mathematical definitions of Shannon information and entropy

(Shannon, 1948).

An informal way to understand Shannon information is that it measures
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how surprising an event is. Since most people do not move, the event of not

moving is unsurprising, and the Shannon information of not moving is small.

Shannon entropy measures the expected Shannon information. So if it is very

hard to predict where people will live next period, then the Shannon entropy

will be large.

Another way to think about Shannon entropy is that Shannon entropy is

approximately proportional to the number of “yes or no” questions one would

have to ask in order to acquire the information, i.e. the number of bits the

information contains.10 So H(J |i) is proportional to the bits of information

needed to communicate where a person in i will live next period.

Note that in the migration context, Shannon entropy depends on the mod-

eler’s choice of time and location: it is easier to predict locations in the next

period if the length of a period is short, and it is easier to predict future lo-

cations if the geography is coarse, like U.S. states, instead of fine, like U.S.

counties. This will be an important feature for the applications of the main

propositions.

Proposition 1. In the steady-state of the standard moving cost model, the

average moving cost is the average Shannon entropy of next period’s location

minus the Shannon information of not moving, all divided by the average mov-

ing rate times the migration elasticity. In math,

δ̄ =
1

Eimi

1

µ
Ei[H(J |i)− I(i|i)] (2)

Proof: Plugging in (1) to the definition of δ̄,

δ̄ =
1∑

i.j:i ̸=j pimi→j

∑
i.j:i ̸=j

pimi→j

(
− 1

µ
logmi→j +

1

µ
logmi→i + vj − vi

)

Rearranging,11

10This is an approximation because Shannon entropy is a continuous measure. It can be
scaled by log 2 to convert the units of Shannon entropy into bits.

11To derive this expression from the one above, note that
∑

j ̸=i mi→j logmi→i = (1 −
mi→i) logmi→i. The −mi→i logmi→i term is then moved into the other term so that the
sum is over all j, and not just j ̸= i. This leaves the logmi→i term outside the summation.
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δ̄ =
1∑

i.j:i ̸=j pimi→j

(
1

µ

∑
i

[
pi

(
−
∑
j

[mi→j logmi→j] + logmi→i

)]
+
∑
i,j:i ̸=j

[pimi→j(vi − vj)]

)

Recall that I defined mi ≡
∑

j:j ̸=i mi→j to be the total outmigration from i.

Using the definitions of Shannon entropy and Shannon information,

δ̄ =
1

Eimi

1

µ
Ei[H(J |i)− I(i|i)] + Em[vj − vi] (3)

Note that in steady-state, the vit and the vjt’s all cancel out because
∑

k pkmk→i =∑
k pimi→k:

δ̄ =
1

Eimi

1

µ
Ei[H(J |i)− I(i|i)] (4)

The steady-state assumption is a key assumption that allows my interpretation

and is why my results do not extend to more-general discrete choice models.

Proposition 1 establishes that the estimated average moving cost is a mea-

sure of information: it is proportional to the expected information of finding

out where an individual i will live next period minus the information of finding

out that the individual did not move.

In addition to Proposition 1, I can alternatively relate the average moving

cost to the Shannon entropy of future locations conditional on migrating.

Define an event �i to be when the random variable J takes on any realization

that is not i, i.e. a move. I will use the notation H(J |i → �i) to be the

conditional Shannon entropy of next period’s location given that the agent

moves away from i.

Proposition 2. In the steady-state of the standard moving cost model, average

moving costs are the migration-weighted average Shannon entropy of next pe-

riod’s location conditional on moving plus the Shannon information of moving

minus the Shannon information of not moving, all divided by the migration
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elasticity. In math,

δ̄ =
1

µ
Em [H(J |i → �i) + I(�i|i)− I(i|i)] (5)

Proof : Define m∗
i→j =

mi→j

mi
to be the probability of moving to j, condi-

tional on moving at all. Then, we can algebraically rearrange the expression

for average moving costs as:

δ̄ =
1∑

i pimi

1

µ

∑
i

pimi

(
−
∑
j ̸=i

[m∗
i→j logm

∗
i→j]− logmi + log(1−mi)

)

So

δ̄ =
1

µ
Em [H(J |i → �i) + I(�i|i)− I(i|i)]

This formulation is helpful compared to Proposition 1 because it separates

out the Shannon entropy conditional on moving from the information involved

in moving or not.12

2 Moving costs sensitivity

In this section, I present three corollaries of the main propositions that high-

light the sensitivity of migration costs to a modeler’s choices. Much of this

section simply gives a different perspective on existing knowledge. It has long

been recognized that moving costs are sensitive to the model used to estimate

them (e.g. Kennan and Walker, 2011), so the contribution here is to show that

12I can extend Proposition 2 to ϵ shocks that are nested logit as in Monras (2020), where
there is one elasticity for choosing whether to move at all and one elasticity for choosing
which location to move to. The formula becomes

δ̄ = Em

[
1

µ
H(J |i → �i) +

1

λ
(I(�i|i)− I(i|i))

]
where µ is the migration elasticity across destination locations and λ is the migration elas-
ticity of moving at all. This is intuitive given that the I terms are about the information
of whether to move at all, and the H term is about the information conditional on moving.
See Appendix B for details.
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the formulation as information can give a helpful perspective on this sensitiv-

ity.

Corollary 1. Holding the migration elasticity constant, estimated average

moving costs depend on the modeler’s choice of length of the time period.

One way to see this corollary is from the formula in Proposition 2.13 Over

short time horizons, the Shannon entropy conditional on moving, H(J |i → �i),

does not vary much. However, migration rates are smaller for shorter time

horizons. So based on Proposition 2, average moving costs will vary with the

time period chosen as I(�i|i) − I(i|i) = log 1−mi

mi
increases when time horizons

are short. In fact, as time horizons get arbitrarily short, estimated average

moving costs get arbitrarily large.

Corollary 2. Holding the migration elasticity constant, estimated average

moving costs depend on the modeler’s choice of geographic partition.

The Shannon entropy of next period’s location depends on how the mod-

eler partitions geography.14 Generally, the more locations there are, the harder

it is to predict exactly which one any given person will end up in. Therefore,

one would expect that Shannon entropy would increase in the number of loca-

tions.15 Mechanically, migration rates also increase in the number of locations.

As far as I know, there is no way to order geographies such that estimated

migration costs must increase or decrease, but in the empirical results, I show

that the Shannon entropy change dominates the change in the information of

not moving when I apply it to states versus migration public use microdata

13Alternative intuition for this corollary can be seen directly in equation (1). The mi-
gration rate mi→j is increasing in the time horizon, and the non-migration rate mi→i is
decreasing in the time horizon, so if vit − vjt is not changing with the time horizon, esti-
mated migration costs must decline.

14Again, equation (1) gives some hints at this proposition because if we divide a region
into two regions, the migration rate to either individual region will be less than to the original
region. The model estimates higher moving costs to rationalize these lower migration rates.
This point is acknowledged in Kennan and Walker (2011) but the quantitative implications
are not explored.

15This may not be true in all cases, if the more precise location is sufficiently informative
of future locations.

10



areas (MIGPUMAs). Certainly, there is no reason to expect the change in

Shannon entropy and the change in migration rates to cancel out.

Consider two silly examples to show that moving costs can be estimated to

be very large or very small depending on the partition. We will use Proposition

2 for these examples. In the first case, consider partitioning every house into

its own geography. In the 2000 Census, 43 percent of people moved houses in

the previous 5 years. The Shannon entropy conditional on moving is enormous

because it is almost impossible to predict the exact house that anyone would

live in. So based on equation (5), we would have an enormous number plus

log((1− 0.43)/0.43). Just to put a number on it, we can assume that modeler

can assign no individual house a probability of being chosen of greater than

0.1 percent. Then a lower bound is

δ̄ =
1

µ
Em[H(J |i → �i)− I(�i|i)− I(i|i)] ≤ 1

µ

(
− log

1

1000
+ log

1− 0.43

0.43

)
≈ 7.2

µ

Alternatively, we could partition the United States into houses with an

even-numbered address and ones with an odd-numbered address. If we assume

it is random which type of house you move into, we would expect 21.5 percent

of the population to “move regions.” Conditional on “moving regions,” the

Shannon entropy is zero. So the estimated average moving cost is

δ̄ =
1

µ
Em[H(J |i → �i)− I(�i|i)− I(i|i)] = 1

µ

(
0 + log

1− 0.215

0.215

)
≈ 1.3

µ

Stepping back from the model, this partition should not matter. The “true”

average cost of moving from an even-numbered house to an odd-numbered

house should not be different than the “true” average cost of moving between

any two houses. Yet, how we partitioned the geography changed the estimated

average cost of moving by a factor of more than 5.16

16A reader might object by stating that the correct way to interpret the lower number
is that it is the cost of moving relative to the cost of “not moving,” and that “not moving”
includes many people who do change houses. But under that interpretation, I can use the
estimate of moving costs from the first model and compare the cost of moving (7.2/µ) to
the weighted average of moving costs for people who remain in same-parity house: (0.5 ×
.43 × 7.2/µ + .57 × 0)/(0.5 × .43 + .57). This difference is approximately 5.2/µ, which is
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Corollary 3. Holding the migration elasticity constant, estimated average

moving costs depend on the modeler’s information set.

Suppose the modeler knew some immutable characteristic of individuals, s,

such as their race or their birthplace. If they estimate separate moving costs

by this characteristic, then equation (2) becomes17

δ̄s =
1

Eismis

1

µ
Eis [H(J |i, s)− I(i|i, s)] (6)

Shannon entropy is concave, and Shannon information is convex, so by Jensen’s

inequality, Eis[H(J |i, s)− I(i|i, s)] ≤ EiH(J |i)− I(i|i)]. Since Eismis = Eimi,

then δ̄s is weakly smaller that δ̄. If s provides any information about the next

periods’ location, then the inequality is strict.

This expression also holds for some characteristics that are not immutable.

For example, if the modeler modeled the decision making process in two stages

where, first, each person chooses a consideration set, and second, compares the

utilities available in each, s could be the consideration set.18 In this setup, I can

still derive formula (6).19 So in a model with consideration sets, the modeler

will estimate lower moving costs than in a model without consideration sets.

A key assumption of the previous corollaries was holding µ constant. Of

course, migration costs could be constant across these choices if µ changed

instead. However, this may be undesirable because µ represents the elasticity

of migration to differences in real wages, so it is central to many counterfac-

tual questions. In other words, changing µ changes the shock propagation and

still about four times as large compared to 1.3/µ. So this alternative interpretation cannot
reconcile these estimates.

17See Appendix A.3 for the derivation.
18As this example illustrates, the characteristic s does not need to be measured in the

data. It can be something the modeler can only see with the model.
19For the derivation, see Appendix A.4. While immutable characteristics and consider-

ation sets lead to equation (6), this is not true of all possible characteristics. In Appendix
A, I add a general characteristic, which affects migration costs and location utilities. I show
that migration costs are the sum of two terms: one which is the difference between the
Shannon entropy of next period’s location and the Shannon information of not moving, and
one that represents the average gain from moving net of migration costs and idiosynchratic
shocks. In these two examples, that second term is zero.
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policy counterfactuals of the model, which are otherwise similar across choices

of timing and geography. Nonetheless, an alternative slightly weaker interpre-

tation of these corollaries is that the product of migration costs and migration

elasticity is sensitive to arbitrary choices of the modeler.

2.1 Moving cost calibrations with data

In this section, I illustrate the corollaries from the previous section using real

world data. In particular, I estimate the average moving costs using equation

(2) with data from the Census and the American Community Survey (ACS) in

2000 (Ruggles, Flood, Sobek, Brockman, Cooper, Richards and Schouweiler,

2023).20 For each state-pair, I calculate mi→j as the share of people who lived

in state i that moved to state j, either from 1995 to 2000 in the Census, or

from 1999 to 2000 in the ACS. I also calculate mi→j,b, where I calculate the

probability of moving from i to j given a birthplace b. And I also calculate

mi→j where i and j are MIGPUMAs instead of states.21

Kennan and Walker (2011) and many subsequent papers express moving

costs in dollar terms. Since wages enter utility in logs, one can interpret these

average moving costs as a percent of wages.22 Therefore, one might think of

moving costs as a measure of the expected Shannon information minus the

Shannon information of not moving, where each bit of information “costs”
w

µ log 2
dollars per migrant.23

I then calibrate the average moving costs according to equation (2), assum-

ing µ = 1. In the literature, there is little consensus on what µ is, and some

good arguments that typical methods have not estimated it well (Borusyak,

20This is the only year, to my knowledge, in which similar surveys asked about the 1-year
migration rate (the ACS) and the 5-year migration rate (the Census).

21MIGPUMA stands for Migration Public Use Microdata Area and is a within-state
region with at least 100,000 people.

22Kennan and Walker (2011) actually expresses utility in dollar terms directly, so there
is no need for this adjustment. However, much of the subsequent literature does express
wages in logs.

23When we change the time period to five years, the most natural change to the model is
to change logwjt in the value function to 5 logwjt to minimize changes to the level of utility
or the marginal utility. In this case, the moving cost can still be interpreted as a percent of
annual wages.
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Table 1: Estimated Moving Costs for Different Models

(1) (2) (3) (4)
Shannon Migration Estimated Cost
Entropy Rate Moving Cost in $1000’s

1 year, states 0.182 0.024 6.692 315
(0.0017) (0.0002) (0.0138) (0.65)

5 year, states 0.561 0.085 5.585 262
(0.0005) (0.0001) (0.0014) (0.07)

5 year, states (modeler knows birthplace) 0.512 0.085 4.981 234
(0.0004) (0.0001) (0.0018) (0.08)

5 year, MIGPUMAs 1.231 0.173 5.983 281
(0.0007) (0.0001) (0.0014) (0.07)

Notes: All datasets are from 2000. 1 year migration uses migration measured over 1 year
from the ACS. 5 year migration uses migration measured over 5 years from the Census.
The unit of geography is a state or a MIGPUMA, a subset of a state with at least 100,000
people in it. Birthplace is an indicator variable either for the state of birth or for being
from anywhere outside the 51 U.S. states. The median household income in 2000 (for
people also living in the U.S. in 1995) was $47,000, so column (4) is column (3) times 47.
Standard errors, in parentheses, are bootstrapped with 100 replications.
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Dix-Carneiro and Kovak, 2022), so I use µ = 1 not because I believe that

but because it is easy for the reader to scale the moving costs by whatever µ

they prefer.24 The comparisons of results are intuitive. In the 1 year calibra-

tion, I estimate moving costs of 6.7 log points, or when converted to dollars,

$315,000. This is the same order of magnitude as Kennan and Walker (2011),

who estimated moving costs of $312,000 (p. 232).25

In the 5 year calibration, I estimate smaller moving costs: 5.6 log points,

or $262,000.26 This is because at the 5-year horizon, an individual choosing

to move is less suprising than at the 1-year horizon.

If the modeler knows the birthplace, the entropy decreases since birthplace

is a helpful predictor of future location choices. Compared to the 5 year

calibration where the modeler does not know birthplace, the moving cost is

even lower: 5.0 log points ($234,000). This is consistent with Zerecero (2021).

One implication is that if the true model of the world was the model de-

scribed in Section 1 and if moving costs and utility depended on birthplace,

but the modeler incorrectly estimates the model without accounting for birth-

place, then they would estimate moving costs that are about 10 percent too

high.

Finally, if I use MIGPUMAs instead of states, it is much harder to predict

future locations, since MIGPUMAs are a finer geography. The moving costs

increase by about 0.4 when I use MIGPUMAs instead of states, to 6.0 log

points ($281,000).
This means if the “true” model involved drawing an i.i.d. shock for every

24Borusyak et al. (2022) makes the point that regressing the change in population on labor
demand shocks—even well-identified labor demand shocks—does not identify µ because the
shocks are correlated across space and affect both origin and destination locations.

25The fact that these are only $3000 different is a coincidence. Kennan and Walker (2011)
is using 2010 dollars, while I use 2000 dollars, and the model in Kennan and Walker (2011)
is much richer. They also explicitly model a semi-elasticity of migration because they have
linear utility in consumption.

26This difference is because of the different time horizons, not the different datasets. I
can estimate the standard one-year model using the data from the one-year migration in
the ACS, calculate the five-year migration rates from that model, and then estimate the
implied moving costs in a five-year model using the five-year simulated data. I estimate a
moving cost of 5.110 log points, which is even lower than the number in Table 1.
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PUMA, but the modeler mistakenly assumed the i.i.d. draws were for every

state, they would underestimate moving costs by a bit less than 10 percent.27

3 How should moving costs be interpreted?

Propositions 1 and 2 give a new interpretation of moving costs in the steady-

state of the standard migration model. In this section, I show how that inter-

pretation can help make sense of the literature’s estimates of moving costs.

Before I discuss this application, it is important to address three ways in

which moving costs are likely to differ from the formulae in the main propo-

sitions. First, in almost all examples in the literature, moving costs are esti-

mated for models that are not in steady-state. Second, most models in the

literature have heterogenous agents. Third, the literature often estimates mov-

ing costs through gravity equations or the index from Head and Ries (2001),

rather than matching migration flows exactly as in equation (2).

Outside of steady-state, there is an additional term representing the average

utility gain from moving (compare equation (3) to equation (4)). I can quantify

how large the term is, by assuming that average moving costs into and out of

any state are the same. Using U.S. data, this additional term is quantitatively

negligible, about 0.4 percent the size of the information term (see Appendix

A for details).

With heterogenous agents, the average moving cost can also be broken

down into the information part and an average utility gain part (see Appendix

A). With heterogenous agents, the magnitude will depend on the details of

the model, but the first terms is typically several times annual income, while

the average gains from moving are not even on the same scale.

The final difference is that moving costs are often estimated using a gravity

27Note that they underestimate average moving costs even though their average is over
only interstate moves, and more than half of the moves in average of the “true” average
moving cost are within-state moves.
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equation or the Head and Ries (2001) index.28 However, equation (2) will still

hold within the model, so as long as the model is approximately matching

migration flows from the data, then the migration costs will be approximately

the same as well.

Given these three considerations, estimated migration costs are not going

to be exactly given by the formulae in Propositions 1 and 2. Nonetheless, the

deviations should be quantitatively small.

So how should a reader interpret reported moving costs in an economics

paper? I propose that they may want to compare the average moving costs

to other papers or other model specifications, as I do in Table 2.29 These

comparisons tell the reader how much information the model has. The larger

the average moving cost, the less the model is able to predict where people

will be in the next period, relative to the information of staying in place.

Corollary 3 tells us that if the modeler’s information set is richer, moving

costs will be lower because the modeler can better predict future locations.

In Table 2, I investigate whether this predicted relationship holds across pa-

pers.30 Table 2 is roughly ordered by the size of the moving costs, from largest

to smallest. The main takeaway from this table is that these moving costs

are indeed predictive of the information richness of the model: the lower the

28This formula assumes δij = δji. Then from equation (2),

δij =
1

2

1

µ
(logmi→i,t + logmj→j,t − logmi→j,t − logmj→i,t)

.
29To include a paper in this table, I required the paper to report an average moving

cost in some sort of interpretable units and to use extreme value shocks. Papers such as
Bishop (2012) and Oswald (2019) report a moving cost function and seem to have moving
costs in the same ballpark as Kennan and Walker (2011), but do not report average costs.
Bartik and Rinz (2018) reports a moving cost of $683,000, but this is not the average of
all movers; rather it is the average cost for a 500 mile move. Similarly, Bayer and Juessen
(2012) also does not feature extreme value shocks, so the moving costs are not exactly a
measure of information. Nonetheless, Bayer and Juessen (2012) does estimate substantially
smaller moving costs ($34,248), likely because they incorporate information about migrants
persistent preferences over locations.

30Of course, the geographies, time periods, and settings are changing as well, so that will
also affect the moving costs. As long as these are not correlated to the information set of
the modeler, we would still expect a correlation between the information set and estimated
moving costs.
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moving costs, the more the modeler knows about the potential migrants. In

column (4), where the modeler’s information is listed, the amount of things

that the modeler knows increases as the moving cost decreases.

We can also compare estimated moving costs within the same paper. Zere-

cero (2021) estimates a model that includes a bias for living in one’s birthplace

and finds that it features smaller moving costs than a model that does not.

This reflects an increase in the information the modeler has to predict future

locations. The Shannon entropy, i.e. the average amount the modeler is sur-

prised by any particular location choice, is smaller when they already know

the person’s birthplace. While it is a less direct comparison, Giannone et

al. (2023) compares their estimated migration costs to the migration costs in

Kennan and Walker (2011) and argues their new costs are lower because they

include wealth in their model. This claim is consistent with wealth being an

important piece of information about future location choices.

Other models also reduce the estimated moving cost by including features

that help predict migration. For example, Heise and Porzio (2022) consid-

ers job search, where migration is more likely to occur conditional on a job

offer, and Porcher (2020) considers rational inattention. Through the lens

of my interpretation, prior to the decision to move, the modeler learns some

information—either the agent gets a job offer (Heise and Porzio, 2022) or they

pick their optimal signal (Porcher, 2020). From the perspective of the mod-

eler, this information helps predict the agents’ future locations, lowering the

Shannon entropy. Consistent with my interpretation, the estimated moving

costs in these models are lower.31 Porcher (2020) estimates a model without

his information frictions and finds the migration costs are 40 percent higher.

31In Heise and Porzio (2022), I cannot directly apply the formulae in equations (2) and
(5) because these models feature additional state variables for the agents. This means that
the vit − vjt term from equation (1) will not cancel out. The correct formulae for when
there are state variables can be found in Appendix A, and these formulae include an addi-
tional term that represents the average utility gain from migration, net of moving costs and
idiosynchratic shocks. I expect this additional term would be positive when migration also
coincides with a job offer as in Heise and Porzio (2022). So this would actually lead to higher
moving costs if there were no change in the modeler’s information. Therefore, the decline
in migration costs actually understates the improvement in the modeler’s information.
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In sum, it does appear that reported moving costs are predictive of the

richness of the model. So the interpretation of moving costs as a measure of

information does help reconcile the different estimates of moving costs in the

literature.

4 Conclusion

Many people think of moving costs as a black box, since it is supposed to

be a stand-in for many things that a modeler might not observe: information

frictions, job and housing search, psychological costs of relocating, and, of

course, the actual monetary costs of moving. In this paper, I provide an

alternative but related interpretation: average moving costs measure the size

of a black box; moving costs are closely related to how little information is in

the model about future locations.

20



References

Bartik, Alexander W and Kevin Rinz, “Moving costs and worker adjust-
ment to changes in labor demand: Evidence from longitudinal census data,”
2018. Job Market Paper.

Bayer, Christian and Falko Juessen, “On the dynamics of interstate mi-
gration: Migration costs and self-selection,” Review of Economic Dynamics,
2012, 15 (3), 377–401.
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Fosgerau, Mogens and André de Palma, “Generalized entropy models,”
2016.

Giannone, Elisa, Qi Li, Nuno Paixao, and Xinle Pang, “Unpacking
moving: A Spatial Equilibrium Model with Wealth,” 2023.

Head, Keith and John Ries, “Increasing returns versus national prod-
uct differentiation as an explanation for the pattern of US–Canada trade,”
American Economic Review, 2001, 91 (4), 858–876.

Heise, Sebastian and Tommaso Porzio, “Labor Misallocation Across
Firms and Borders,” 2022.

21



Jia, Ning, Raven Molloy, Christopher Smith, and Abigail Wozniak,
“The economics of internal migration: Advances and policy questions,”
Journal of Economic Literature, 2023, 61 (1), 144–180.

Jose, Victor Richmond R, Robert F Nau, and Robert L Winkler,
“Scoring rules, generalized entropy, and utility maximization,” Operations
research, 2008, 56 (5), 1146–1157.

Kennan, John and James R Walker, “The effect of expected income on
individual migration decisions,” Econometrica, 2011, 79 (1), 211–251.
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Schmutz, Benôıt and Modibo Sidibé, “Frictional labour mobility,” The
Review of Economic Studies, 2019, 86 (4), 1779–1826.

Schubert, Gregor, “House price contagion and U.S. city migration net-
works,” 2021. Job Market Paper.

Shannon, Claude E., “A Mathematical Theory of Communication,” The
Bell System Technical Journal, 1948, 27 (3), 379–423.

22



Tombe, Trevor and Xiaodong Zhu, “Trade, migration, and productivity:
A quantitative analysis of china,” American Economic Review, 2019, 109
(5), 1843–1872.

Zerecero, Miguel, “The Birthplace Premium,” 2021. Job Market Paper.

23



A Extension to the model

In this appendix, I relax two big assumptions that I made in the main text:

first, that agents are homogeneous except for their location; and second, that

the model is in steady-state.

I derive a general formula for average moving costs, that is the sum of two

terms. The first term is the same as in the main text of the paper. The second

term is the average change in the continuation value v for migrants, net of

migration costs and idiosyncratic shocks.

I then consider a few special cases that are referenced in the main text.

First, I consider the case where I drop the steady-state assumption but main-

tain the homogeneity assumption. I show that this new term is quantitatively

small under reasonable assumptions on the symmetry of moving costs. Second,

I consider the case where I maintain the steady-state assumption, but allow for

the homogeneity assumption to be relaxed based on permanent characteristics

of the agents. Finally, I consider the case with the steady-state assumption,

but drop the homogeneity assumption to allow for consideration sets.

A.1 More general setup

Consider an extension to the standard moving cost model, in which agents have

a state s that affects their payoffs and moving costs. s is multidimensional,

and it is a function of both the previous s, the location choice i, and a random

variable X. This is a general setup so that s could include age, the history of

past locations, job status and wages, etc.

With the state variable, utility is now represented by this value function:

Vnt(j, s) = max
i

logwit(s) + ait(s)− δji(s) +
1

µ
ϵint + βEVnt+1(i, s

′(s, i,X))

where wit(s) is the (real) wage, ait(s) is the amenities in i, δji(s) is the moving

cost from j to i, and ϵint is an i.i.d. extreme value shock. µ is a scale parameter,

which governs the elasticity of substitution between places.

Define vit(j, s) ≡ logwit(s)+ait(s)+βEVnt+1(i, s
′(s, i,X)). Then migration
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is given by

mj→i,t(s) =
exp(µ(vit(j, s)− δji(s)))∑
k exp(µ(vkt(j, s)− δjk(s)))

Again, I normalize δii(s) = 0, so the δji(s) is then

δji(s) = vit(j, s)− vjt(j, s)−
1

µ
logmj→i,t(s) +

1

µ
logmj→j,t(s)

Consider the migration-weighted average moving cost in the steady-state

of the model:

δ̄s ≡
∑

s,i,j:i ̸=j pi(s)mi→j(s)δij(s)∑
s,i,j:i ̸=j pi(s)mi→j(s)

=
1

1−
∑

i,s pi(s)mi→i(s)

∑
s,i.j:i ̸=j

pi(s)mi→j,t(s)

(
− 1

µ
logmi→j,t(s) +

1

µ
logmi→i,t(s)

)
+

1∑
s,i,j:i ̸=j pi(s)mi→j(s)

∑
s,i,j:i ̸=j

pi(s)mi→j,t(s)(vit(j, s)− vjt(j, s))

Rearranging,32

δ̄s =
1

1−
∑

i pi(s)mi→i(s)

1

µ

∑
i

pi(s)

(
−
∑
j

[mi→j(s) logmi→j(s)] + logmi→i(s)

)
+ Em

ijs(vit(j, s)− vjt(j, s))

Define mi ≡
∑

j:j ̸=i mi→j to be the total outmigration from i. Then

δ̄s =
1

Eismi(s)

1

µ
Eis [H(J |i, s)− I(i|i, s)] + Em

s [vit(j, s)− vjt(j, s)] (7)

The first term is the same as before, except now the entropy and the informa-

tion are both conditional on s. The δ is averaged across all s. The second term

is the average gain in utility for migrants, net of moving costs and idiosyn-

chratic shocks. The expectation Em
s is the average, weighted by the number

of migrants of type s moving from i to j.

32Note that
∑

j ̸=i mi→j = 1−mi→i.
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In this more general setup, average moving costs are the sum of two compo-

nents: the first is still a measure of the Shannon entropy from the perspective

of the modeler minus the Shannon information of not-moving; and the second

is the average gains from migration.

In the main text, the second term drops out because there are not average

gains to migration. This is because the continuation value is the same for

everyone, conditional on location, and I assumed the model was in steady-

state, which meant that the same number of people moved into and out of

each location.

A.2 Special Case: Not in steady state

If I drop the steady-state assumption, but assume there are no additional s

states, then (7) becomes

δ̄ =
1

Eimi

1

µ
Ei [H(J |i)− I(i|i)] + Em[vit(j)− vjt(j)] (8)

The first term is the same as in the main part of the paper, and the second

term is the additional utility gains from the fact that there is net migration

to better places. The second term is likely to be positive, and it is small when

differences in utility across space are small or when net migration is small.

In fact, I can numerically show that they are small, using the same data

that I used in Section 2.1. I assume average moving costs into and out of every

location are equal: ∑
mi→jδij =

∑
mi→jδji

With this assumption, I can put a number on these average gains from mi-

gration net of moving costs and the idiosynchratic utility.33 This assumption

allows me to set up a system of two equations and two unknowns relating∑
j ̸=i mi→j(vit − vjt) and

∑
j ̸=i mi→jδij, based on equation (1). Solving, the

33I cannot assume δij = δji for every i and j because it overidentifies the data. With
states, there would be 51 × 51 migration data points, but only 51 vi’s and 51×50

2 δij ’s to
identify them with.
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average gain from migration is given by:

1

µ

∑
i,j,i̸=j

pimi→j log

(
mi→j

mj→i

mj→j

mi→i

)

In the data, and with µ = 1, this number is about 0.022. This is about 0.4

percent of the size of the information term (see Table 1). So at least in the

standard model, the steady-state assumption was not quantitatively affecting

my results.

A.3 Special Case: s is immutable

Another special case of the more general result is if s is immutable: i.e. s′ = s,

and I maintain the steady-state assumption. s being immutable means I can

rewrite vit(j, s) ≡ vits, i.e. the continuation value does not depend on j. And

because the model is in steady-state, the number of people of type s moving

into i is cancelled out by the number of people of type s moving out of i. So

the average gains from migration term drops out:

δ̄ =
1

Eismi(s)

1

µ
Eis [H(J |i, s)− I(i|i, s)]

This leaves us with the main result again, but where the Shannon entropy and

the Shannon information are conditional on s.

A.4 s and j do not affect vit

Another straightforward example is if vit(j, s) does not depend on j or s, e.g. s

governs the contemporaneous moving costs, but nothing else.34 This could be

the case if, at the start of each period, each agent drew a random consideration

set, which is represented by s. But once they moved to the new region, they

looked just like anyone else there.

34As in the last example, I maintain the steady-state assumption here.
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Under this assumption, we again get the same equation:

δ̄ =
1

Eismi(s)

1

µ
Eis [H(J |i, s)− I(i|i, s)]

So the Shannon entropy and Shannon information depend on s, but the result

is otherwise the same.

In general, however, adding the state to the model leads to the possibility

that there are average gains to in utility for migrants. Examples of s that

would matter are if s equals the history of past locations, age, or employment

status. I would expect these to be positive because migrants will tend to move

to places with higher utility for themselves.
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B Monras (2020) extension

Consider the Monras (2020) model, which features a nested logit formulation,

so that the elasticity to move at all is different than the elasticity of where to

move to. I will denote the elasticity to move at all with λ and the elasticity

of where to move with µ. The migration probabilities in his model are given

as:35

logmi→j =µ(vj − δij)− µvim + λvim − log (exp(λvi) + exp(λvim)) (9)

logmi→i =λvi − log (exp(λvi) + exp(λvim))) (10)

log(1−mi→i) =λvim − log (exp(λvi) + exp(λvim))) (11)

where vim = 1
µ
log
∑

k ̸=i exp(µ(vk − δik)). The first step is to solve for δ̄ in

terms of observed migration, as in the main text. Subtracting (10) from (9)

gives:

logmi→j − logmi→i = µvj − µδij − λvi + (λ− µ)vim (12)

Subtracting (10) from (11) gives:

vim = vi +
1

λ
log(1−mi→i)−

1

λ
logmi→i (13)

Plugging in (13) to (12) gives:

logmi→j−logmi→i = µvj−µδij−µvi+(λ−µ)

(
1

λ
log(1−mi→i)−

1

λ
logmi→i

)
Solving for δij,

δij = vj − vi −
1

µ
logmi→j +

(
1

µ
− 1

λ

)
log(1−mi→i) +

1

λ
logmi→i

35In the main text, Monras (2020) does not include moving costs to simplify the algebra,
but they are straightforward to include as I do here.
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So the average moving cost is

δ̄ =
1

Eimi

∑
i ̸=j

pimi→j

(
vj − vi −

1

µ
logmi→j +

(
1

µ
− 1

λ

)
log(1−mi→i) +

1

λ
logmi→i

)

In steady-state, the vi and vj all cancel out, as in the main text:

δ̄ =
1

Eimi

∑
i ̸=j

pimi→j

(
− 1

µ
logmi→j +

(
1

µ
− 1

λ

)
log(1−mi→i) +

1

λ
logmi→i

)

Adding and subtracting 1
µ
logmi→i,

δ̄ =
1

Eimi

∑
i ̸=j

pimi→j

(
− 1

µ
logmi→j +

1

µ
logmi→i +

(
1

µ
− 1

λ

)
(log(1−mi→i)− logmi→i)

)

The first two terms inside the parentheses are identical to the standard model.

So we can plug in the result from the Proposition 2:

δ̄ =
1

µ
Em [H(J |i → �i) + (I(�i|i)− I(i|i))]− Em

[(
1

µ
− 1

λ

)
(I(�i|i)− I(i|i))

]
Which simplies to

δ̄ = Em

[
1

µ
H(J |i → �i) +

1

λ
(I(�i|i)− I(i|i))

]
This has a very similar formulation to Proposition 2. But instead of multi-

plying the Shannon information terms by 1
µ
, they are multiplied by 1

λ
. Intu-

itively, this makes sense because µ is the elasticity conditional on migrating,

and H(J |i → �i) is the Shannon entropy conditional on migrating. Similarly,

λ is the elasticity of moving at all and I(�i|i) − I(i|i) is the relative Shannon

information of moving to not moving.
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