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Abstract. Cromwell and Marar [CM] present an analysis of semi-regular (generic)
surfaces with a single triple-point and connected self-intersection set. Six of their
surfaces are the projective plane, including Boy’s surface and Steiner’s surface. We
build on their work by incorporating twists similar to that of Apery’s immersion of
the projective plane and show that with a few additional surfaces, all such generic
maps of the projective plane are now identified.

In Models of the Real Projective Plane, Apery [A] describes an immersion of the
projective plane into R3 with a single triple point but with image homeomorphically
distinct from Boy’s surface. This immersion does not seem to be well known but is
explored in greater detail in [GK]. An essential difference between the two immersions
is that there is a twist in a neighborhood of one loop of the self-intersection set.
Following [GK], we denote Boy’s surface as B and the alternative immersed surface
as G. As shown in [GK], up to ambient isotopy these, and their mirrors, are the only
immersions of the projective plane with connected self-intersection set and a single
triple point.

Cromwell and Marar [CM] present an analysis of semi-regular (generic) surfaces
with a single triple-point and a connected self-intersection set. Six of the surfaces
they present are the projective plane, including Boy’s surface and Steiner’s surface.
In this paper, we build on their work by adding twists similar to that of Apery’s
immersion and showing that with a small number of additional surfaces, all possibil-
ities for the projective plane (up to homeomorphism) are now identified. Note that,
unlike Cromwell and Marar, we restrict to the projective plane to keep the number
of possibilities relatively small.
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In Section 1, we provide preliminary definitions and results. In Section 2, we
present the new examples and proof that the list is complete. Section 3 illustrates
homotopy relationships between these surfaces.
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help; Jane Hawkins and Justin Sawon for their constructive comments and service on
the thesis panel; and Richard Rimanyi, Scott Carter, and Washington Marar for their
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UNC.

Section 1: Preliminaries

Let M be a closed surface and f : M → R3 be a smooth map. Recall that a
Whitney umbrella, or pinch point, is a singularity which locally, for some choice of
coordinates, is given by f(u, v) = (uv, u, v2). Whitney [W] proved that any map can
be approximated by one with singularities only of this type. Hence we call fgeneric
if it is an immersion except for a finite number of pinch points. The image is what
we will refer to as a generic surface (semi-regular surface in [CM]).

We will restrict our classification to the case where M is the projective plane
P . We can represent generic maps on the standard plane model of P by indicating
the self-intersection set and any pinch points. Each double point arc is on the plane
model twice to represent the two places it occurs. For example, the cross-cap model
of P has two pinch points connected by an orientation-reversing double point arc. So
we represent it as in Figure 1a. The two dots represent pinch points and the arcs
joining them represent the double-point set. The three pre-image points of a triple
point are represented by intersections of double point arcs. For example, Figure 1b
represents Boy’s surface B.

Figure 1

Another way of visualizing a generic surface is the neighborhood of the self-
intersection set. Let S denote the self-intersection set of the image f(P), and N(S)
a small neighborhood of S in f(P). This is referred to as a partial surface in [CM].
As illustration, we show in Figure 2 for B and G.
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Figure 2

The proof in [S] that no embedding of the projective plane exists in R3 can
be readily generalized to show that generic surfaces in R3 are two-sided; that is, a
positive and negative side to the surface can be consistently designated.

Proposition 1.1. All closed generic surfaces in R3 are two-sided.

Proof. Let f(M) be a closed generic surface in R3. Suppose it is not two-sided. Then,
there exists an orientation reversing loop λ somewhere along the surface. Starting at
any point on λ, choose a short normal vector of length δ. Push λ off f(M) to create
a curve λ′ that is δ away from λ and not meeting f(M). Then connect the curve you
just drew through the point. This curve λ′ now becomes a loop that intersects the
surface exactly once.

Furthermore, since the image is in R3, the loop bounds an embedded surface K
that is transversal to the image f(M) and missing the pinch points. Let g : K →
R3 be the map from the surface with boundary into R3. As Samuelson argues, by
transversality, it consists of closed curves in the interior of K plus arcs that terminate
on the boundary. If they do terminate, they must terminate in two places. Therefore,
the number of points on the boundary must be even. But by construction, the number
of points on the boundary of g−1(f(M)) is one, yielding a contradiction. ¤

Arguments in the remaining sections will make use of a few other results, in-
cluding the Izumiya-Marar formula and a generalization of Banchoff’s theorem on
the parity of triple points to the setting of generic maps. Although the latter can
be shown from Szucs [Sz] and is also a special case of a result on Nuño Ballesteros
and Saeki [NS], we include an alternative proof here (Proposition 1.3) since it is quite
simple and gives a somewhat different proof to the classical result of Banchoff (more
in the spirit of [FT]).

Proposition 1.2. (Izumiya-Marar [IM]) The Euler characteristics of a surface M
and any generic image of M , f(M), are related by the number of triple points and
pinch points in the generic surface, by the following relationship:

χ(f(M)) = χ(M) + #(triple points) +
#(pinch points)

2

For the next result, we consider an ε-displacement of a generic surface: a collec-
tion of embedded orientable surfaces obtained by pushing off the generic surface to
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one side. That is, designate one side of f(M) as positive. For a sufficiently small ε,
take an ε-neighborhood of f(M) in R3. Let Lε be the boundary of the ε-neighborhood
on the positive side. For example, for a cross-cap surface, Lε would be a sphere, re-
gardless of which side one pushes to. In general, the choice of sides can give different
Lε. In particular, in the neighborhood of a pinch point, pushing to one side locally
gives two sheets, while pushing to the other side gives one. See Figure 3. We say a
pinch point is double sheeted if locally Lε has two components, and single sheeted if
only one. Note that this clearly depends on the choice of what we call the positive
side.

Figure 3

Proposition 1.3. Let f(M) be a generic surface in R3 with a designated positive
side. Then, χ(M) + #(triple points) + #(double-sided pinch points) ≡ 0(mod 2).

Proof. Begin with a cell decomposition of f(M) with vertices at pinch points and
triple points and edges along arcs of double points. Take a corresponding cell decom-
position for Lε (so that k-cells of Lε project to k-cells of f(M)). We consider the
local differences in Euler characteristic between Lε and f(M). At a double-sheeted
pinch, the pinch point on f(M) corresponds to two different vertices on Lε, adding
one to the Euler characteristic. A single-sheeted pinch point corresponds to only one
vertex on Lε. An arc of double points displaces to two edges on Lε, subtracting one
from the Euler characteristic. A triple point on f(M)corresponds to four vertices on
Lε,, and the Euler characteristic increases by 3.

Let ef(M) represent the number of edges of f(M). The above three facts give
that

χ(f(M)) = χ(Lε) + ef(M) − 3 ·#(triple points)−#(double-sided pinch points)

where χ(Lε) is simply the sum of all the Euler characteristics of all the embedded
surfaces making up Lε.

Each triple point has six edges emanating out of it. Each pinch-point has a
single edge emanating out of it. Each edge ends in two places. Therefore a stan-
dard Riemann- Hurwitz argument gives that the total number of edges in the self-
intersection set is

ef(M) =
1

2
[6 ·#(triple points) + #(pinch points)].
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Noting that the number of pinch points is the sum of the number of single-sided plus
double-sided pinches gives us

χ(f(M)) = χ(Lε)+
1

2
·#(single-sided pinch points)− 1

2
·#(double-sided pinch points).

By the Izumiya-Marar formula,

χ(f(M)) = ξ(M) + #(triple points) +
1

2
·#(pinch points),

so
χ(Lε)−#(double-sided pinch points)−#(triple points) = χ(M).

However we know χ(Lε) is even because it is the sum of the Euler characteristics
of orientable surfaces. So χ(M) + #(triple points) + #(double-sided pinch points) is
even. ¤

Note that switching the orientation switches each double-sheeted pinch point to
a single-sheeted pinch point and vice versa. It is useful to re-formulate the above
result so that it is independent of which side of f(M) one chooses as positive. Define
an oppositely-oriented pinch pair to be one with one single-sheeted and one double-
sheeted pinch point. Note that any non-oppositely oriented pinch pair will have zero
or two double-sided-pinches, so the parity of double-sided pinch points is the same as
oppositely-oriented pinch pairs.

Corollary 1.4. For any generic surface,

χ(M) + #(triple points) + #(oppositely-oriented pinch pairs) ≡ 0(mod 2).

Banchoff’s classical result on immersed surfaces follows immediately by setting
the number of pinch points equal to zero.

Corollary 1.5. (Banchoff) An immersion of the projective plane must have at least
one triple point.

Lastly we note that there is a restriction on the number of boundary circles in
N(S) when we focus on generic maps of the projective plane.

Proposition 1.6. The number of boundary edges of a neighborhood of the self-
intersection set for a generic map of the projective plane is at least 4. If these edges
all bound embedded disks in f(P) then the number is exactly 4.

Proof. By the Izumiya-Marar formula, we know that

χ(f(P)) = χ(P) + #(triple points) +
1

2
·#(pinch points) = 2 +

1

2
·#(pinch points).

On the other hand, one can calculate χ(P) directly. Once again construct a cell
decomposition of f(P) with vertices at pinch points and triple points and edges along
arcs of double points. Any face of P must be planar; that is, a disk with holes. Let fk
be the number of faces with k boundary edges. We can add (k− 1) edges connecting
existing vertices to create a cell decomposition of P . Then we have
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v = #(triple points) + #(pinch points) = 1 + #(pinch points)
e = 1

2 · [6 ·#(triple points) + #(pinch points)] + f2 + 2f3 + · · ·+ (k − 1)fk
= 3 + 1

2 ·#(pinch points) + f2 + 2f3 + · · ·+ (k − 1)fk
f = f1 + f2 + · · ·+ fk.

Then

2 +
1

2
·#(pinch points)

= χ(f(P)) = −2 +
1

2
·#(pinch points) + f1 − f3 − 2f4 · · · − (k − 2)fk.

So f1 ≥ 4, giving that there are at least 4 boundary edges in N(S). ¤
We end this section by summarizing several criteria that N(S) must satisfy in

order to be able to be completed to the image of a generic map of the projective
plane.

i. The number of boundary components must be at least 4 (by Proposition
1.6).

ii. The number of oppositely-oriented pinch pairs must be even (by Corol-
lary 1.4).

iii. Any boundary component of N(S) bounding a disk face must be un-
knotted and unlinked with any other boundary component and with the
self-intersection set.

iv. If two double-point arcs emanating from the triple point are opposite
each other (as positive and negative axes) are joined, then the number
of quarter twists must be odd. If the two arcs are adjacent, then the
number of quarter-twists must be even. This follows from Proposition
1.1 above and Lemma 3.1 of GK.

Section 2

Cromwell and Marar present six generic maps of the projective plane: 0A, 2C,
4A, 4D, 4F, and 6A. The numbers correspond to the number of pinch points they
have, with 0A being Boy’s surface and 6A being Steiner’s. (Note that the lettering is
not sequential because Cromwell and Marar consider surfaces besides the projective
plane.)

With a single triple point and a connected self-intersection set, the double-point
set in the neighborhood of the triple point extends in six directions, like coordinate
axes in three-space. If the axial arcs do not end in pinch points, they must meet up
with another double-point arc emanating from the triple point, and the term for that
is a bridge. If that bridge is the boundary of a disk in f(P), we call it an untwisted
bridge. The case of untwisted bridges is completely covered in [CM]. However, in
addition to the six immersions and generic surfaces of the projective plane presented
in the Cromwell-Marar paper, there are a few additional ones that incorporate a
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twist similar to that in the immersion G. One of the three additional surfaces is G.
In this section, we present the others and demonstrate that the list of immersions
and generic surfaces of the projective plane with a single triple point and a connected
self-intersection set is complete.

As we saw in the last section, the neighborhood of the self-intersection set is
sufficient for determining if a specific configuration of bridges and pinch points is the
projective plane in R3. The criteria from the last section encourage a specific focus
on the edges of N(S). To more easily illustrate the edges, we will “flatten out” the
diagram to three overlapping circles, similar to ones found in Carter [C]. See Figure
4. The arcs in this diagram join up to create the boundary edges of N(S).

z

z y

y x

x+

+

+

-

-

-

z+

x+

y+

y-

x-

Figure 4

These diagrams can be adapted to show an untwisted or half-twisted bridge join-
ing adjacent arcs as in figure 5a. As shown, we can either indicate the identifications
to be made along the bridge, or make those identifications in the edge diagram (as
on the right of 5a). In the case of the twisted bridge, we will generally eliminate the
small kink in an edge for simplicity. It clearly does not affect linking. Pinch points
can also be easily illustrated as shown in Figure 5b: an intersection simply turns into
two non-intersecting arcs. Recall that a pinch-point can be directed in two ways,
which leads to different surfaces.

Quarter-twisted bridges joining opposite arcs are significantly more difficult to
illustrate, hence we simply indicate the identifications to be made. (Note that under
this notation, a quarter-twist one way and a three-quarter twist the other way are
identical.) Thus if we find a candidate with four edges, we will need to present the
full N(S), where we can more easily tell if the edges are linked.
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(a) adjacent bridges (untwisted and twisted)

(b) pinch points

(c) quarter-twist bridge

Figure 5

The resulting diagram will be referred to as the edge diagram. Figure 6 shows
the edge diagrams of G and the six Cromwell-Marar surfaces of the projective plane
with a single triple-point and connected self-intersection set so that the reader can
better understand how these diagrams work.

Figure 6. Girl’s (0′A), Boy’s (0A), 2c, 4A, 4D, 4F , Steiner’s (6A)
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In this section, we aim to examine systematically all configurations of bridges to
identify which represent the projective plane. The cases with six pinch points (hence
no bridges) have been covered by Cromwell and Marar, and the cases with zero pinch
points (immersions) have been covered by Goodman and Kossowski. Since pinch
points come in pairs, we are left to examine configurations with four and two pinch
points. We approach this task by considering the different configurations of bridges,
and then considering in which directions we might add pinch-points. Oftentimes the
bridges require certain directions in order to achieve at least four edges, one of the
criteria from the last section.

Case I. One bridge and four pinch points.

Begin with configurations with one bridge and four pinch points. The case of an
adjacent untwisted bridge is covered in Cromwell and Marar. So here, we consider
the half-twisted adjacent bridge, and all configurations of the opposite bridge. By
symmetry, the direction of the half-twist is irrelevant.

A. The adjacent twisted bridge case. Figure 7 is an edge diagram of an adjacent
twisted bridge, before the direction of the pinch-points has been determined.

z
+

Figure 7

We claim that however we configure the pinch-points, fewer than four edges
result. Each pinch point locally has two edges, one on each side. From the diagram
we see that there are no edges without pinch points. With four edges and four pinch
points, each with two local edges, on average each edge goes through two pinch points.
Upon inspection of the diagram, there is no arc that connects a pinch point to itself,
so each edge must go through at least two pinch points. Therefore, each edge must
go through exactly two pinch points. With either direction for the pinch point at
z+, the edge going through z+ also goes through two other pinch points, which is
a contradiction. We hence conclude that there are fewer than four edges, and this
configuration cannot lead to a projective plane.

B. The opposite bridge case. On the left of Figure 8a is the general edge diagram
for an opposite bridge. In either twist direction, the argument is the same so we look
at one case. Note that there is exactly one way to choose the direction of the pinch-
points to create exactly four edges, illustrated on the right of Figure 8a. Because we
did abandon the ability to check for linking, we are forced to examine N(S). For a
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quarter-twist, the edges are unlinked as shown in Figure 8b, meaning this is a generic
surface of the projective plane. To stay consistent with Cromwell and Marar, we will
call this surface 4′A.

Notice that adding additional full twists, in either direction, along the bridge cre-
ates linking between any pair of edges along the bridge and hence could not completed
in 3-space.

Figure 8

Case II. Two bridges and two pinch points

There are many more configurations in this scenario, but the arguments for
whether they can have at least four edges are simpler.

By Corollary 1.4, the one pair of pinch points must be like oriented. The two
pinch points are either opposite or adjacent to each other. If they are opposite, there
can be two adjacent bridges or two opposite bridges. If they are adjacent there can
be either two adjacent bridges, or an adjacent bridge and an opposite bridge.

A. Opposite pinch-points, with two opposite bridges. With the pinch points
opposite each other, to be like oriented, pinch pair must have a Möbius band neigh-
borhood (a non-well-aligned pairing in the language of [CM]). There are a few cases
to consider: both bridges having quarter-twists in the same direction as shown in
Figure 9a (twisting both in the other direction is symmetric), and one bridge with a
quarter-twist in one direction and one in the opposite direction. This latter case has
edge diagram is readily shown to have fewer than four edges. So we are left with one
case to consider in detail.

Figure 9b is the space model corresponding to the edge diagram in 9a. The black
shapes match up with other black shapes, as do the white shapes. The bridges have
not been attached to preserve generality, though the double-point set for one of the
bridges is presented. The goal is to show that either the boundary component with
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squares or the one with circles must be linked to the drawn double-point loop. Show-
ing this will imply that completing the figure would require a disk-face intersecting
the double-point set creating another triple-point and violating our hypothesis of a
single triple point.

Let x be the linking number between the square boundary component and the
double- point loop. Let y be the linking number between the circle boundary compo-
nent and the double-point loop. If they are different, they cannot both be zero, and so
one must be linked. The portion of the boundary component around the dark-shape
bridge will change both x and y by the same number. However, the hollow-shape
bridge will change the circle boundary component by an odd number and the square
boundary component by an even number, as is observable by the fact that one hollow
circle is inside the shape and one outside, whereas both hollow squares are outside.
Therefore, x does not equal y.

 
 

(a) (b)

Figure 9

B. Opposite pinch points and two adjacent bridges. 1. Two twisted bridges.
Of the twelve original arcs in the diagram in Figure 10a, four are joined to create one
complete boundary edge passing by no pinch points. The bridges join the other arcs
to create four longer arcs, each running from one pinch point to the other. Then the
connections at each pinch point join pairs of these, hence there are fewer than four
boundary edges to N(S).

2. A twisted bridge and an untwisted bridge. The edge diagram is shown in
Figure 10b. While only one direction of twist for the bridge is shown, it is easily
seen that either direction produces linked edges and hence cannot be completed in
3-space.
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Figure 10

3. Two untwisted bridges. We again note that to be like oriented the pinch pair
must have a Möbius band neighborhood; hence N(S) is as shown in figure 10d. Note
that there are six boundary edges so some faces must not be disks. By Proposition
1.6, 4 = f1 − f3 − 2f4 − · · · − (k − 2)fk. In particular, the number of disk faces is at
least four. Suppose some face has more than two boundary edges. Then there would
be fewer than four remaining boundary components for disk faces, a contradiction.
Therefore, if this configuration leads to the projective plane, it must be the case that
two boundary edges match up to create an annular face, and the other four edges
bound disks.

To see what these surfaces look like, notice that if every edge bounds a disk, the
resulting cell complex would be the cross-cap intersected with the sphere. Therefore,
to ensure our resulting complex is a single surface, the annular face must border a
component from the sphere (1, 4 or 5) and a component from the cross-cap (2, 3 or
6). There are nine possible combinations, and after accounting for reflections leads
to five: 1 and 2 (we call this surface 2′′D), 1 and 3 (which cannot be completed since
1 and 3 are separated by the disks on 2, 4, and 6), 1 and 6 (2′′B ), 5 and 2 (2′′A), 5 and
6 (2′′C).
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The resulting four surfaces are similar. Each is the cross-cap surface with part
of the face pushed through the double-point set to create a triple-point. Another way
to think of it is as the sphere and cross-cap intersecting one another to create a triple
point, and then attaching a handle somewhere between somewhere on the sphere and
then somewhere on the cross-cap.

C. Adjacent pinch points. Now we consider the case where the pinch points are
adjacent to one another. The configuration with two adjacent untwisted bridges has
already been covered by Cromwell and Marar; the only projective plane model is 2A.
Now consider the configurations with twisted bridges.

1. One opposite bridge, and one adjacent bridge, twisted or untwisted. The
direction of twists is not important here; the same argument works regardless of
direction. Edge diagrams for the twisted and untwisted adjacent bridge are shown
in Figure 11a. The connections formed by the bridges create one complete edge and
four arcs. Then at the z+ pinch point, two pairs of these arcs are joined, leaving no
possibility of four or more complete boundary edges.
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Figure 11

2. Two twisted adjacent bridges. The edge diagram for this configuration is
shown in Figure 11b. After the connections for the bridges are made, there are four
arcs (two running from the pinch point at z+ to the one at y− and one each from z+
to itself, the last from y− to itself. At least two distinct arcs are connected at z+ so
fewer than four boundary edges result.

3. Two adjacent bridges, one twisted and one untwisted. For each of the edge
diagrams shown in Figure 11c, there is exactly one way to choose the direction of the
pinch points to obtain four edges, illustrated in the second row of 11c. However, the
one on the right has linked edges and cannot be completed in 3-space. However the
one on the left gives another new generic surface: 2′A.

This completes the classification of generic maps of the projective plane with
one triple point.
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Section 3

In [GK] a classification of immersions of P with a single triple point was aided by
analyzing the possible preimages of the self-intersection set (the “double-decker set”
of [CS]) and tracking the changes in the preimage through Roseman-Homma-Nagase
moves. In this section we will similarly trace deformations between the generic maps
of the projective plane classified in the previous section.

Recall that two immersions f, g : M → R3 are called regularly homotopic if there
is a smooth mapping H : M × [0, 1] → R3 such that Ht is an immersion for each t
in [0, 1], and H0 = f and H1 = g. One can extend this notion to generic maps by
requiring that each Ht be an immersion except at pinch points. (See [J] for further
details.) Pinkall [P] classified immersions of surfaces into R3 up to regular homotopy,
allowing diffeomorphisms of the surface. Juhász [J] proved that any two generic maps
with singularities of the same surface are regularly homotopic if and only if they
have the same (positive) number of pinch points. In this section, it is our aim is to
illustrate these results as they apply to the specific surfaces we have been considering
by tracking changes in the preimage.

For the projective plane, there are precisely two regular homotopy classes of
immersions [H], [JT]. We will demonstrate that B and G, with similarly-oriented self-
intersection sets, represent these two equivalence classes. Following that, using just
a couple of Roseman moves, we constructively show that all the generic maps with
two pinch points are regularly homotopic, as are all the maps with four pinch points.
Finally, using one additional Roseman move that pinches off a loop on the surface
to create a pair of pinch points (hence no longer staying within a regular homotopy
class), we illustrate how to move between all the surfaces of the last section.

Pinkall [P] defines a Z4-valued quadratic form that is an invariant on immersed
surfaces . For the two regular homotopy classes of the projective plane, Pinkall shows
this invariant reduces to the direction of the twist of a Möbius band somewhere on
the immersed surface. There is a right-handed Möbius band on f(P), if and only if
f(P) is homotopic to (the right-handed) Boy’s surface.

Hence the problem has been reduced to finding a Möbius band somewhere on
both B and G and seeing if they twist in the same direction or in opposite directions.
For either, the immersed loop which is the self-intersection set is an orientation-
reversing loop.

Let f : P → R3 be an immersion yielding B and g : P → R3 giving G. Let
αB (respectively αG) be a loop going directly through the self-intersection set on
the pre-image, with corresponding ε-neighborhood ΨB (ΨG). The neighborhoods ΨB
and ΨG map to Möbius strips since their core is an orientation-reversing loop in the
pre-image. Now consider the difference between f(ΨB) and g(ΨG). g(ΨG) is almost
identical to f(ΨB) but has two half-twists as it goes around the twisted loop twice.
This adds a full twist, meaning if g(ΨG) is a right-twisted Möbius strip, then f(ΨB)
is a left-twisted Möbius strip, and vice versa.
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This is best illustrated by the set N(S) for each of the immersed surfaces. If
one carefully follows a strip, going through the triple-point six times over, almost the
exact same path is followed for B or G, with the only difference being a half-twist
each time one traverses around the twisted bridge. We can conclude B and G are
homotopically distinct.

In the next discussion we will not consider the surfaces with annular faces since,
as noted in section 2, they can be viewed as the cross-cap with part of the surface
pulled through the self-intersection set to create a triple point. It is then trivial to
note that all four are regularly homotopic to the cross-cap, and by extension 2A and
2′A.

One of the key tools we use for demonstrating a deformation between the other
surfaces is the plane model of P . To get a plane model representation of any of the
generic maps, we use a procedure developed in [GK]. The preimage in P of a neigh-
borhood of the triple point T consists of three components, each homeomorphic to a
neighborhood of one of the three preimages of T , as shown in Figure 12a. Information
about how the ends of these components are identified allows us to reconstruct the
self-intersection set as a graph in P . For a bridge, connect the ends of the double-point
arcs of the corresponding slices (with twists as needed). For pinch-points, connect
ends of the double point set corresponding to the same axial arc (e.g. the positive
x-axis to itself), again respecting the orientation of the pinch point. The dot on the
graph indicates a pinch point. One example (2′A) is illustrated in Figure 12b.

z+ z+

z- z-

y- y-y y
+ +

x-

x-

+x

+x

(a)

(b)

Figure 12

Preimage graphs for the other generic surfaces from Section 2 are shown in Figure
13.
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A 

C

D F

Figure 13

While the plane models make it easy to demonstrate the Roseman moves trans-
forming one surface to one another, there are limitations: the direction of a twist is
not apparent and one cannot determine if the surface is realizable in space.

We use the two Roseman moves in Figure 14 (a) and (b) to illustrate the regular
homotopies between generic surfaces with the same number of pinch points. The left
figures illustrate the moves in space and the right in the local changes in the plane
model.

(a)  Passing a pinch point through a third sheet

(b) Type II saddle move

(c) Type I saddle move

Figure 14
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We use one other Roseman move (Figure 14c) to transform to a generic surface
with a different number of pinch points (which changes the regular homotopy class
of the surface).

If (x) is a move from the above list, we will use (x−1) to denote doing the inverse
move. Note the moves (a) and (a−1) are local, meaning that if the move can be done
in the plane model, then it can be done in space. However, the others require certain
configurations of the surface in space. The (c−1) move requires that the pinch-points
be like-oriented, while (c) requires that the loop being pinched off bounds a disk in
space not meeting the surface. The (b)-move requires that two paths (A and B in
figure 15) with ends at points of the self-intersection set and lying on different sheets
of the surface bound a disk not meeting the surface.

Figure 15

A single application of the (a) move transform the generic surfaces 2A and 2′A to
the cross-cap surface. So to get from one to the other, one only need apply (a) and
then (a−1). Note that since (a) and (a−1) are local moves, showing the change in the
plane model is sufficient. Similarly 4A, 4D and 4F can be homotoped to the cross-cap
with a pinch-point blister after a single (a) move.

This leaves 4′A. Note that one cannot apply move (a) to it. Rather one must use
a (b) move to get to 4A, and we must verify in the space model that one can perform
the appropriate move.

A

B

A

B

Figure 16
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Finally, to illustrate transformations taking a generic surface with 2k pinch
points to one with 2k − 2 pinch points (hence changing the regular homotopy class)
we use the (c−1) move. We need only check that the pinch points that are to be
merged are like oriented. We add some notation to the plane diagrams to indicate
like-oriented pinch points. Having chosen a side of the image surface to be the pos-
itive side, one can readily identify single-sheeted and double-sheeted pinch points.
That information is encoded into the plane diagram as follows. Pinch points will be
indicated by open or filled circles (shown on the chart in Figure 13). Those of the
same type are like-oriented to each other and can be merged.

Begin with Steiner’s surface 6A. All the pinch points are similarly oriented so
we can merge any pair where we have a clear merge path. The symmetry of Steiner’s
surface makes it easy to check that whichever two pinch points one chooses to apply
(c−1) to, the resulting generic surface is 4D. (This is also clearly the only possibility
since it is the only generic surface with all four pinch points similarly oriented.)

Note that when one applies (c−1) on 4A , one pair has no clear merge path.
Merging the other pair (along either possible merge path) disconnects the preimage
graph, producing an annular face. It is possible to merge to either 2′′A or 2′′B.

There are several ways of merging pairs of pinch points on 4D, three of which lead
to 2C , two to 2′A, and one to each of 2′′C and 2′′D. For 4F , any choice of like-oriented
pinch points yields either 2D or 2′A depending on the choice of merge path.

The 4′A surface allows no possible path to merge pinch points. Of course, if one
first performed a regular homotopy to another of the 4-pinch surfaces, one could then
merge to 2D or 2′A.

Merging the two pinch points of 2A takes the surface to either B or G, depending
on the choice of merge path. Interestingly, merging the pinch points on transform the
surface to G, but B is not possible since there is a twisted bridge.

The above transformations are summarized in Figure 17.

Figure 17
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