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fractal: a curve or geometric figure, each part of which has the
same statistical character as the whole.

Oxford Languages (2023)

1 Introduction

The size of a city is the aggregation of many individual’s decisions over where to live, a

complex choice that depends on many factors, the factors of which, in turn, depend on the

individuals. Despite this complexity, these aggregations yield striking patterns. The most

famous pattern is the adherence of the largest cities to Zipf’s Law (Auerbach, 1913; Zipf,

1949), where the population of a city is roughly inversely proportional to the rank of its size.

In this paper, I highlight and then explain an extension of Zipf’s Law: that the city-size

distribution has a fractal property. Within sub-regions of the U.S., such as halves, Census

regions, Census divisions, or even states, cities continue to adhere to Zipf’s Law.1 I offer a

location choice theory that can explain this fractal pattern. The theory’s main ingredient

is that there is heterogeneity in geographic attachment: some people value living in specific

locations or regions a lot, and others value it less. Including this property in an otherwise

standard location choice model is able to generate the fractal pattern.

While I am not the first to look at sub-regions to examine Zipf’s Laws,2 I believe I am

the first to examine multiple levels and to describe it as a fractal property. To do this, I use

the populations of core-based statistical areas in the year 2000, which the Census defines as

a group of counties with strong commuting ties and an urban area of at least 10,000 people.

Using pre-defined sub-regions, I look for whether Zipf’s Law holds in these regions, and I

find that it does across four levels.

Next, I examine whether existing models can easily account for this phenomenon. While

it is straightforward to generate the fractal pattern in a conventional model by setting ap-

propriate utilities for cities, it begs the question of what underlies a similar pattern that

arises for the utilities themselves.

I take a different approach and propose a toy model that can generate Zipf’s Law for cities

1The exact extent to which Zipf’s Law holds is controversial in the literature, at least since Eeckhout
(2004), which argued that a log-normal distribution fit the entire city-size distribution better. However, it
is relatively uncontroversial that the right-tail of the city-size distribution has a fatter tail than log-normal,
which is the main fact I wish to focus on. In that framing, I am establishing that there is a fat tail at many
levels of sub-regions as well. See Nitsch (2005) and Arshad, Hu and Ashraf (2018) for surveys of available
evidence on to what extent Zipf’s Law is true.

2See Giesen and Südekum (2011), Subbarayan (2009), Kumar and Subbarayan (2014), Ziqin (2016), and
Ye and Xie (2012) who look for Zipf’s Law in sub-regions of Germany, India, and China.
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through the inclusion of heterogeneity in location attachment. In this model, people differ

in the maximum distance they are willing to move from their base location, and they choose

the best location within their permissible range. In the model, the fractal pattern emerges

as larger cities attract people from further away. The resulting Pareto distribution, which is

equivalent to Zipf’s Law, arises because as higher-utility cities not only draw nearby people

with strong location attachment but also far-away people with weak location attachment.

I show suggestive evidence of this mechanism using data from the 2000 Census. Cities

with larger populations attract a larger share of people from outside their state, Census divi-

sion, Census region, and half of the country. Additionally, when focusing on the individuals,

I find that people who move further away are more likely to choose larger cities. People who

live in their birth state are 10 percent more likely to live in a city that is 10 percent larger.

But people that move out of state are 11.5 percent more likely to live in a city that is 10

percent larger.

Finally, I integrate attachment heterogeneity into a conventional location choice model.

Specifically, I introduce the assumption that people could have heterogeneous utility weights

on the distance from their birthplace, as well as different weights on unobserved idiosyn-

chratic factors. Using the the 2000 Census data, I estimate the model and find that sub-

stantial heterogeneity in these weights better matches the migration data. According to my

model, people at the 25th percentile of attachment are three times more elastic to distance

from their birthplace compared to those at the 75th percentile.

Because it features attachment heterogeneity, the model is able to match the fact that

people who move further away are more likely to live in larger cities. More excitingly, it

is also able to generate the fat tail of the city-size distribution without assuming that the

baseline utility of cities has a fat tail. In fact, the estimated utilities in the model have

almost no excess kurtosis compared to a normal distribution.

In addition to being able to explain an interesting phenomenon, the proposed theory has

significant implications for urban economics. In particular, the model estimates different

population elasticities to utility for each city. This elasticity increases with city size, with

the largest cities about 50 percent more elastic than the smallest cities. This result is an

important consideration when considering differential impacts of policies across space.

The central feature of my theory is heterogeneity in location attachment. In other con-

texts, there exists empirical evidence of such heterogeneity. In particular, researchers have

looked for such heterogeneity that differs by observable features of people. For instance,

Diamond (2016) finds that skilled workers exhibit less attachment than unskilled workers,

and Cadena and Kovak (2016) finds that immigrants have less attachment than natives.3

3In a sense, Albert and Monras (2022) microfounds a reason that immigrants are particularly unattached
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Neither paper considers heterogeneity beyond observable characteristics, but given that it

differs with observables, it likely also differs with unobserved characteristics of people.4

Given that Zipf’s Law is a well-known fact about cities, there exist several explanations in

the literature. Most of these are dynamic, which is a different approach to the explanation I

provide. Most well known is Gabaix (1999), which shows that if all cities experience random-

walk proportional growth, it will converge to a Pareto distribution.5 This proportional

growth is known as Gibrat’s Law (Gibrat, 1931) and has been the focus of a large empirical

literature since then (e.g. Modica, Reggiani and Nijkamp, 2017; Berry and Okulicz-Kozaryn,

2012; Malevergne, Pisarenko and Sornette, 2011).6

The dynamic view of Gabaix (1999) and others is complementary to the view that I

espouse here. There is no inherent contradiction between the two setups: the location choice

model I propose could easily be extended to a dynamic framework that features Gibrat’s

Law (see Section 5.7). However, I hope that the framework I propose is more helpful for

microfounding Zipf’s Law in a more typical urban framework—which is often static.

Before this year, there were only a handful of papers that consider the city-size distri-

bution as a consequence of location choice models (Behrens, Duranton and Robert-Nicoud,

2014; Lee and Li, 2013; Hsu, 2012). But in work released a few months before mine (and

of which I was unaware while writing this paper), Watanabe (2023) considers how a model

can generate the Pareto tail of city-size distributions in the presence of heterogeneous mo-

bility frictions. He does not focus on the fractal component that I emphasize here and

models frictions in a different way. Nonetheless, the contributions of the two papers overlap

significantly, and Watanabe (2023) was first.

Of the prior work, most related is Behrens et al. (2014) which postulates that Zipf’s Law

is the consequence of sorting across talent to different sized cities. To the extent that the

heterogeneity in location attachment in my model is correlated to talent in their model, the

results are related. However, there is no sense of geography in Behrens et al. (2014) so it

is not able to consider a fractal pattern. Further, they propose a full model of production

in cities and focus most of the empirical tests on that. My paper emphasizes the location

choices of workers and focuses empirical tests on that.

Hsu (2012) is also quite related, proposing that cities specialize in goods that are het-

to specific locations because much of their consumption occurs via remittances.
4Molloy, Smith and Wozniak (2011) documents that migration is also quite heterogeneous by various

observable characteristics. To the extent that observed migration is related to attachment, this is additional
evidence that there is significant heterogeneity.

5Others include Córdoba (2008a,b); Duranton (2006, 2007); and Rossi-Hansberg and Wright (2007).
6Of course, Gibrat’s Law generates the fractal pattern for free, since any subset of cities will also follow

a Pareto distribution. The theory in this paper is orthogonal to Gibrat’s Law, in the sense that it is not
inconsistent with it, nor does it imply it. I show this in Section 5.7.
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erogeneous in returns to scale, rather than my model which focuses on how far people are

willing to move. While the mathematical underpinnings have some parallels, the economics

of the two theories are quite different, with Hsu (2012) focused on heterogeneity in goods

rather than people.

Pareto tails are also studied in a variety of other contexts, e.g. Luttmer et al. (2015),

Jones and Kim (2018), and Gabaix, Lasry, Lions and Moll (2016) for income and wealth.7 To

explain Pareto tails, economists almost always use a version of random exponential growth or

they assume heterogeneity in the incentives to accumulate income or wealth. My approach

here is the latter, which—to my knowledge—has not been applied to cities.

2 The Fractal Pattern of City Sizes

Auerbach (1913) and Zipf (1949) documented what is known as Zipf’s Law for Cities,8 that

the rth largest city is about 1/r the size of the largest city. This section argues that Zipf’s

Law holds at smaller geographies of the country, meaning that the distribution of cities is a

fractal.

The analysis is straightforward: I rank the cities by population size and plot the log of

the rank versus the log of the population. Zipf’s Law predicts that the relationship is linear

with slope -1.9

Figure 1 shows the pattern for entire country in Panel (a). Each dot represents a core-

based statistical area (CBSA), and populations are measured in the 2000 Census. The log

rank is on the x-axis, and the log-population is on the y-axis. Consistent with the well-known

Zipf’s Law, there is a fairly linear relationship between the log rank and the log population,

and the slope is close to -1.

In Panel (b), I split the country roughly in half, east and west of the Mississippi River.

Within each half, the relationship holds. The two lines of best fit are constrained to have

slope -1.

7Ironically, the term “superstars” is often applied to models that can generate fat-tailed labor income
distributions. In urban economics, while the term “superstars” applies to the best cities, it is not usually
focused on the distribution of the size of the cities, but rather just refers to a set of cities with high income,
education, and prices (to be fair, these are typically large cities).

8For example, Gabaix (1999) is titled “Zipf’s Law for Cities: An Explanation,” while acknowledging it
was previously discovered by Auerbach (1913).

9Throughout this section, I do not do any statistical tests to formally ask whether the true distribution
is Pareto. See papers such as Black and Henderson (2003), Bee, Riccaboni and Schiavo (2013), González-Val
(2010), Levy (2009), Malevergne et al. (2011), Ioannides and Skouras (2013), and Fazio and Modica (2015)
that each try to use statistical tests to figure out whether the tail of the city-size distribution is Pareto, with
mixed answers. However, anything close to a linear relationship will indicate a fat-tailed distribution. And
what I would like to establish is that these fat tails are a property of the city-size distribution at a variety
of geographic levels.
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In Panel (c), I split the country into the four census regions. Within each region, the

relationship holds.

In Panel (d), I split the country into the 9 Census Divisions. Again, a line with slope -1

fits the data fairly well.

Finally, in Panel (e), I split the country into states. I show the 35 states which have at

least ten CBSAs. Again, the relationship between city size and rank is fairly linear with

slope about -1.

Summing up, it appears that Zipf’s Law holds across many varieties of subregions of the

United States, at least down to the state-level. This is the definition of a fractal: a pattern

that is repeated at smaller scales of the whole.

2.1 Challenges for existing location choice models

The standard location choice model has no problem generating this pattern. However, I argue

in this section that the parameters that the standard model uses to match these moments

lead to some puzzles.

By the “standard model,” I consider the following discrete choice problem:

maxui = max
k

vk + ϵik (1)

where vk is the baseline utility of living in city k, that is common to everyone and ϵik is the

match-specific idiosynchratic utility that depends on the person and the place. The standard

assumption is that ϵik is idiosynchratic and identically distributed, with an extreme value

distribution.

This gives rise to

log pk = vk + c

where pk is the population of k, and c is a constant across cities that guarantees that the

total population across cities is equal to the total population of the country.

So to match the fact that city populations follow the patterns in the previous section, the

standard model only requires that exp(vk + c) also follows those patterns. Hence, to explain

the fractal patterns of Section 2, we can assume that vk has a fractal pattern, but instead of

a Pareto distribution, it has an exponential distribution. Of course, this begs the question

of why vk would have an exponential tail and a fractal pattern.

In addition, it gives rise to two facts that seem at odds with the data or at least would

require further explanation. First, as I just stated, the standard model requires vk must

have an exponential tail. This is somewhat at odds with the fact that there do not seem
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Figure 1: Zipf’s Law for city sizes, for different geographies. The x-axis is the rank of the
city size within each region, and the y-axis is the population of the city. A city is defined
as a CBSA in 2005. Panel (a) shows the whole country. Panel (b) splits the cities into the
four Census regions, and Panel (c) shows the nine Census divisions. Panel (d) shows the 35
states with 10 or more CBSAs. The lines of best fit in each figure are constrained to have
slope -1. 8



to be huge differences in consumption or real income in big cities versus small (Diamond

and Moretti, 2021; Diamond and Gaubert, 2022), much less a fat tail in consumption across

space. Of course, it could be amenities that have an exponential tail or the curvature of

the way consumption maps onto utility that generates exponential tails, but these beg the

question of why those phenomenon exist.

Second, to generate large cities in every region, it requires a limited amount of spatial

correlation in the vi. Since there is substantial overlap in the distribution of city sizes across

all the regions and divisions, that also requires a substantial overlap in the distributions

of vk’s, implying zero or negative correlation across space. However, many of the things

that we think determined the utility of living in the city are correlated across space. In

particular, the recent spatial and trade literature has emphasized the importance of market

access, which is inherently correlated across space. In addition, wages, rents, and measures

of natural amenities are also highly correlated across space.

While neither of these puzzles is entirely unexplainable, it could also be that different

changes to the standard model, that focus on how people choose their locations, rather than

the vk themselves, could help to resolve these puzzles. I show one such change in the following

sections.

3 Toy Model of the Fractal Pattern of City Sizes

In this section, we propose a toy model of location choice that can generate the pattern in

Section 2.

Consider a continuum of locations, indexed by k ∈ [0, 1]. Each location has baseline

utility vk, which is bounded. Assume that vk has a well-defined and unique maximum on

any interval [x2−n, (x+ 1)2−n) for any whole number n and whole number x < 2n.10

Consider a continuum of people endowed with two characteristics, indexed by n and j.

Each person is one of N types, indexed by n = 0, 1, 2, ..., N − 1. Their type determines the

range they can move before facing high moving costs. Assume each type has mass 1, so the

total population is N . In addition, each person is endowed with a base location j, which is

distributed uniformly across locations. n and j are independent of one another.

Agents maximize their utility, which is composed of the baseline utility of the city and a

moving cost:

unj = max
k

vk − δnjk

10A Brownian motion would have this property, so it does not seem that restrictive.
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where

δnjk =

0 if ⌊2nk⌋ = ⌊2jj⌋

∞ otherwise

where ⌊·⌋ is the floor function. So an agent faces infinite moving costs from their base

location if the location they consider is not in the same region as their base location, where

a region is defined by splitting the number line into 2n evenly-spaced units.

In other words, people in the model divide the country into regions depending on their

type, and will pick the highest-utility city in their region.

Proposition 1. Define the size of the rth largest city to be pr.
11 Then:

lim
N→∞

pr = 2/2⌊log2 r⌋ ≈ 2/r

Proof: Define an n-region to be an interval [x2−n, (x + 1)2−n] for some x. For each n,

every location is in one n-interval.

Consider the location with highest vk. Call it k0. Everyone of type n that lives in the

same n-region moves to k0. The number of people of type n that move there is the size of

the n-interval that k0 is in. This size is 2−n. Summing over n, the population of k0 is

∞∑
n=0

2−n = 2

Next consider the 1-interval that does not contain k0 (i.e. if the best location is between .5

and 1, consider [0, .5) and if the best location is between 0 and .5, consider [.5, 1)). Consider

the best location in this 1-interval, and call it k1. For all n > 1, k1 will attract everyone that

lives in the same n-region. Summing over n, the population of k1 is

∞∑
n=1

2−n = 1

Now let’s consider the general case. For any n, there are a total of 2n n-intervals. 2n−1 of

those n-intervals have a location that was the best location in an n − 1-interval. We will

ignore those. Only consider the population of the best location in the other 2n−1 n-intervals.

Call these locations {kn}. Since those will attract all the people of type m in the same

11Assume ties are broken randomly, or that all cities tied for rank r are given the rank of r.
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m-interval, for all m > n, the population at those locations will be

∞∑
m=n

2−m = 21−n

Hence, there will be 2n−1 locations that have population 21−n.

It is easy to rank the cities in terms of population since the population at kn is bigger

than km if and only if n < m. Since there are 2n−1 locations for each n (except for n = 0,

which has one city), the rank of a city of type n is strictly greater than 2n−1 and weakly less

than 2n for all n > 1. Therefore a city of rank r has type n = ⌊log2 r⌋. And therefore the

population of the city of rank r is

lim
N→∞

pr = 2/2⌊log2 r⌋

Proposition 2. Similarly, for any region [x2−n, (x+1)2−n), where x and n are whole num-

bers and x < 2n, the population of the largest city is bounded below by

lim
N→∞

p1 ≥ 2−n

and the population of the rth largest city is

lim
N→∞

pr = 2−n/2⌊log2 r⌋ ≈ 21−n/r

for r ≥ 2.

Proof: Consider the best location in the n-interval. If it is the best location in the n− 1

interval, it will have population that is weakly greater than 2n−1. Otherwise, it will have

population 2−n. Hence, the weak inequality for the largest city. For subsequent cities, the

proof is identical to Proposition 1.

The propositions imply that the distribution of population is approximately Pareto, i.e.

there is a negative linear relationship between log r and log pr. This is true not only at the

aggregate level, but also for any given region. Hence, there is a fractal pattern in the city

sizes, as documented in the previous section.

In Figure 2, I show the distribution of population in the toy model for two simulations.

For both simulations, I assume N = 10, so the most-attached agents will not move outside

their 1
1024

-sized region. The least-attached agents will consider the whole line. Panel (a)

shows the population in each location, for one random draw of all the vk, in which I assume
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they are independently normally distributed. However, the fractal pattern does not depend

at all on how I pick the vk. In panel (b), I show the population distribution if I assume

that vk = −k, so that places to the left are always higher utility. In this graph, the fractal

pattern is perhaps even more evident to the naked eye.
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Figure 2: Simulations of the toy model for N = 10

Panels (c) and (d) show that the toy model matches the fractal pattern of the data. In

Panel (c), I plot the log population versus the log rank (where I break ties randomly). This

graph is identical for either way of generating the vk. The linear relationship is evident. In

Panel (d), I show the same graph, but breaking the interval into four equally sized regions.

Except for the rank 1 point, the graphs would be identical for any vk. For these particular

graphs, I use the same vk that generated Panel (a). This means that not only does Zipf’s

Law hold on the entire until interval, it also holds for subregions of the interval, as it did in
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the data.

Of course, the model presented here is extremely stylized, and is not meant to match

the way real people choose where to live. Nonetheless, because of the starkness of the

assumptions and the conclusions, the toy model can tell us what assumptions are or are not

critical to generate the fractal patterns in the real world.

In particular, the model helps resolve some of the challenges that I raised in the previous

section. First, the model allows arbitrary spatial correlation in the baseline utilities, while

still generating big cities in all regions. Second, the model does not require that the utilities

themselves have any particular distribution. In fact, the differences across utility in this

model can be arbitrarily small, and utility can have a fat tail, a thin tail, or no tail at all.

What is critical is heterogeneity in attachment. In the model, it is essential that some

people need to live very close to their base location, while others are able to live further

away.

4 Empirical Evidence of Model’s Mechanisms

If the key assumption of the previous model is that people have heterogeneous attachment

to regions, we may be able to look for evidence of this in the data. In this section, I show

two types of evidence. The first focuses on the cities: bigger cities should have a higher

proportion of their population from further away places. The second is complementary but

focuses on people: people that move further away are more likely to end up in big cities.

For the first piece of evidence, I measure the share of population in each city that was

born in the same state, division, region, or half of the country as the city itself. I then

compared across city sizes using a binned scatter plot.

For the second piece of evidence, I run the following regression:

logmj→k = β(δjk) log pk + αj(δjk) + ϵjk

where mj→k is the number of people who were born in location j and live in location k, pk is

the population in k, δjk is the distance between j and k. If some people have less geographic

attachment they are more likely to move further away, and will end up in high-utility cities

with lots of population. Hence, we would expect the β(δji) to be increasing in δji.

4.1 Data

For this exercise, I use data from the 2000 Census, available via Ruggles, Flood, Sobek,

Brockman, Cooper, Richards and Schouweiler (2023). For each person, the data records the

13



birthplace, by state, and the current location, by public use microdata area (PUMA). I use

the geographic correspondence engine from Center (2016) to assign PUMAs to CBSAs. If

a PUMA is not entirely within a CBSA, I apportion the person based on the population-

weighted fraction of the PUMA in the CBSA. I then aggregate the data to state-CBSA pair,

recording the total number of people that were born in state j and moved to CBSA k.

4.2 Results

The first piece of evidence is presented in Figure 3. I split cities into 50 bins of about

18 cities each, and plot the mean share of population that is from out-of-area versus the

log population. For all four definitions of area—state, division, region, and half—the share

coming from out of that area is increasing in the city size. This is qualitatively consistent

with the toy model, where bigger cities could attract people from further away.12

This fact is a challenge for a typical model without attachment heterogeneity. If we took

the standard model and added homogenous moving costs with respect to distance, it would

not be able to generate this pattern. We will show this later in Appendix Figure A3.

We start with a simple split, where we consider two bins of δjk, based on whether k

is in state j or k is outside of state j. For cities that span multiple states, we assign the

state that has the greatest share of the city’s population. The results of the regression are

in Table 1. If someone lives in the same state they were born, they are 9.9 percent more

likely to live in a city that is 10 percent bigger. But if they live outside the state they were

born, then they are 11.5 percent more likely to live in a city that is 10 percent bigger. This

provides some suggestive evidence in favor of the toy model’s main mechanism, that there

exists heterogeneity in location attachment.

We can be much more flexible in terms of distance than just inside/outside the birth

state. The results of the regression in which we discretize δjk into 21 bins are presented

in Figure 4. In the closest bin, where people are not living that far from their birthplace,

people do move to larger cities, with an elasticity non significantly different than 1. But for

people that are moving further away, the elasticity of migration to population is higher. This

12Of course, in the toy model, the shares from outside the area in the smallest cities would be zero, but
there are good reasons to not take those predictions literally. Here are a few: birthplace may not be the right
proxy for base location; The areas as measured in the data may not correspond precisely to the n-regions in
the previous section; and the model is a toy model where we might want to take some qualitative predictions
seriously but not the quantitative ones. In the next section, we look at a quantitative model of the U.S.,
and I revisit this figure.
Note also that there is a lot of noise in the figure, even after the binning. This seems to be driven by the

fact that some cities are central in their areas while others are on the edges and are able to attract people
from nearby states more easily. As long as this centrality is not systematically correlated to city size, it
should not bias these estimates.
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Figure 3: Share of the city that comes from out of the area, where area is defined as the
state of the city, the Census division of the city, the Census region of the city, or the half of
the country (split by the Mississippi). Cities are split into 50 bins, and the mean of each bin
is plotted in the graph, along with a linear fit line. Cities are assigned to an area based on
which state the plurality of their residents live in.

Table 1: Regression Results

(1) (2)
Log Migration Log Migration

Log Population 0.993∗∗∗ 1.151∗∗∗

(0.0169) (0.0196)
Observations 907 44427
Sample Within State Outside State
Birth State FE Yes Yes

Standard Errors Clustered by Receiving Destination
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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increases between 300 km and about 1500 km, but does decrease a bit for very far distances,

which largely involve moving from coast to coast or to or from Alaska or Hawaii. A natural

interpretation is that the people that move further are more likely to have less attachment

to a specific location, and so are able to pick high-utility areas more than the people that

are close to their birthplace, who are more likely to be attached to that area, and care less

about utility.
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Figure 4: The importance of city size, by distance. The graph shows the coefficients δij and
the 95 percent confidence interval of the regression logmj→i = βδji log pj + δji + ϵji. The
furthest left point consists of cities that are in the same state as the state of birth. Outside
the state of birth, the distance is measured from centroid to centroid, and binned into 20
groups.

Neither of the two facts in this section are consistent with a standard gravity model in

which migration can be expressed as:

mjk = XjYk/f(distancejk)

where Xj and Yk are city-specific terms and f is an increasing function. If this equation

determines migration, then the first fact must be false: if two cities are in the same location,

then the share of the people from any given location j is the same, regardless of what Yk is.

Similarly, if this equation is true, the second fact must also be false. Because for two cities

that are the same distance away, the amount of migration will be proportional to Yk. This

proportion does not depend on how far people move. Hence, to match these facts, we will
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need to consider a model that does not generate a standard gravity equation, such as having

heterogeneity in geographic attachment.

5 Incorporating the Mechanism into a Standard Model

In this section, I modify the standard model to have heterogenous attachment, and estimate

that model from data. I then look at whether the model can generate the pattern from the

previous section, and the fractal pattern that motivates the paper.

5.1 A discrete choice model with heterogeneous attachment

The model is a discrete choice model over possible places to live. As in the toy model, each

person has a base location and heterogeneous attachment. The heterogeneous attachment

is modeled as different weights that people place on the disutility of living far from home,

as well as different weights on the match-specific utility draws.

In math, a person i, born in location j, maximizes their utility by picking a location k

to live in according to the following formulation:

uij = max
k

vk − βiδjk + γiϵik

where vk is a city-specific indirect utility, reflecting the amenities, wages, and rents in that

city, δjk is the distance from j to k,13 and ϵik is an i.i.d. extreme value draw for each person-

city pair. βi and γi are weights that vary by person dictating how important distance and

the idiosyncratic term are in their decision.

This model is observationally-equivalent to a model in which we multiply the entire right-

hand side by 1
γi
, which ends up being more tractable to estimate. I assume that βi and γi are

drawn from a jointly-log-normal distribution, which I parameterize in the following manner:[
log βi/γi

log 1/γi

]
∼ N

([
µ

0

]
,

[
σ2
β ρσβσγ

ρσβσγ σ2
γ

])

The 0 is a normalization because of the city-fixed effects. The entire distribution is gov-

erned by four parameters: µ which governs the median importance of distance; σβ, which

represents how much variation there is in relative attachment to birth-location compared to

the idosynchratic term; σγ, which measures how much variation there is in the relative im-

13When we take this to the data, we will use the log distance from the state’s centroid to the city’s
centroid, except for city’s that are in the state, for which we will estimate this term.
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portance of the city-fixed-effect compared to the idiosynchratic term; and ρ which measures

how correlated the two terms are.

Intuitively, people with small γi will end up moving to high-utility big cities. Similarly,

people with small βi will end up moving further away. People with less attachment in total

(low βi and γi) will end up moving further away and to more populous cities, as we saw in

the data.

Given the structure of the data, which is the same as in Section 4, we add a parameter

to the model, which is that we measure δjk in the following manner:

δjk = log distancejk · 1[k not in j] + λ1[k in j]

So if the city k is outside of state j, we assume δjk is the log of the number of kilometers

between them, and if city k is in state j, we assume δjk is equal to λ, which we will estimate.

5.2 Estimation Strategy

There are 5+K−1 parameters of the model to estimate, where K is the number of cities: µ,

σβ σγ, ρ, λ, and each of the vk, one of which I can normalize. For any given set of parameters,

I can solve for the total number of migrants from j to k:

mmodel
jk = pj

∫
βi

∫
γi

exp( 1
γi
vk − βi

γi
δjk)∑

ℓ exp(
1
γi
vℓ − βi

γi
δjℓ)

f(βi, γi)dβidγi

where pj is the number of people born in j and f(βi, γi) is the probability density function of

the multivariate log-normal distribution. In practice, I discretize the log-normal distribution

over a 31× 31 grid.14

To do the estimation, my objective is to minimize the sum of the squared difference

between the log migration from j to k in the model and the data, conditional on exactly

matching the number of people born in j and the total number of people choosing k.

min
∑
jk

(logmmodel
jk − logmjk)

2

subject to ∑
j

mmodel
jk =

∑
j

mjk and
∑
k

mmodel
jk =

∑
k

mjk

The estimation itself has two loops to it. In the inner loop, I take as given the µ, σβ, σγ,

14I use an evenly spaced grid from -3σβ to 3σβ for log βi/γi and an evenly spaced grid from −3σγ to
3σgamma for log 1/γi.
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ρ, and λ, and I estimate all the vk’s through an iterative procedure.

vn+1
k = vnk + θk log

∑
j mjk∑

j m
model
jk

where θk is the model-implied elasticity of the city’s population to vk.
15 For an initial guess

v0, I iterate until the vector vn converges. This guarantees that the total number of people

moving to k matches in the model and the data.

In the outer loop, I use the MATLAB function fminunc to minimize the sum of the

squared differences in migration in the model and the data, over µ, σβ, σγ, ρ, and λ.

5.3 Estimates

The model estimates significant dispersion over both βi/γi and γi, as well as a negative

correlation between the two. See Table 2 for a listing of the specific values of the five

parameters (the vk will be discussed below).

We can use the estimates of the standard deviations and correlations to solve for the

standard deviations and correlation of log βi and log γi directly.[
log βi

log γi

]
∼ N

([
µ

0

]
,

[
σ2
β + σ2

γ − 2ρσβσγ −ρσβσγ + σ2
γ

−ρσβσγ + σ2
γ σ2

γ

])

The standard deviation of log βi is 1.01. The standard deviation of log γi is still 0.33. The

correlation between the two is 0.66. So people that have less strong preferences over distance

also tend to have less strong preferences over idiosynchratic factors. So the model does a

better job matching the data when there are some people that are less “attached” to any

specific location.

In particular, there is a lot of heterogeneity in how elastic people are to distance, with

the 75th percentile of elasticity being more than 3 times as elastic as a person in the 25th

percentile.16 This is consistent with the toy model’s, whose primary feature was that some

15This elasticity can be solve in closed-form. It is given by the following weighted-average of i-specific
elasticities:

θk =

∑
j

∫
βi

∫
γi

1
γi
mijk(1−mijk)f(βi, γi)dβidγi∑

j mjk

which mijk is the migration probability of person i in j moving to k:

mijk =
exp( 1

γi
vk − βi

γi
δjk)∑

ℓ exp(
1
γi
vℓ − βi

γi
δjℓ)

16To calculate this, I use the z-scores from a normal distribution and calculate: exp((z.75 − z.25)σβ).
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Parameter Baseline Model Constrained Model

log(µ) 2.065 1.02
λ 4.0549 2.13
σβ 0.8382 .001
σγ 0.3263 .001
ρ -0.4154 0

Table 2: Estimated Parameter Values. In the Baseline Model, all five parameters are uncon-
strained. In the Constrained model, only the first two parameters are estimated.

people were willing to move further than others.

5.4 Comparing the model to the empirical evidence
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Figure 5: Share of the city that comes from out of the area, in the model

In fact, the model is able to replicate the main features of the data that was highlighted

in Section 4. Figure 5 replicates Figure 3, but uses the migration flows implied by the model.

As in the data, the share of population from outside the area is increasing in city size and

the magnitudes are comparable.
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In contrast, in Appendix Figure A3, we replicate the same figure, but using a constrained

version of the model in which we do not allow for heterogeneity in moving costs. In that

version of the model, the shares are mostly independent of city size.

Similarly, if we run the same regression regarding the proclivity to move to large cities

based on distance using the model’s output, we get almost the same coefficients as in Table

2.17 In Figure 6, I replicate Figure 4, using the model’s predicted migration, and it also

predicts that people that move far from their birthplace are more likely to live in big cities.

In Appendix Figure A1, I show that in a model where I constrain σβ and σγ to be close

to zero, the model cannot reproduce this feature.

Intuitively, this is achieved because of the negative correlation between − log βi/γi and

log 1/γi. People that care a lot about whether to live in a high-utility city care less about

how far away it is.
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Figure 6: The importance of city size, by distance, in the model

5.5 An explanation of the Pareto tail

The next step is to evaluate whether the mechanisms in the model can generate the fractal

pattern in the data. In particular, a major question is whether the model can produce a

fat tail. One reason to think that it can is that there is a non-linear relationship between

log population and vk. In Figure 7, I show a scatter plot of the log population versus the

17The exact coefficients are 0.98 instead of 0.99, and 1.13 instead of 1.15.
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vk. I also include a locally weighted scatterplot smoothing curve, which shows a fair bit of

concavity in the relationship between the two variables. This means that at high levels of vk,

a small increase in vk increases log population more than it does at low levels. This means

that even if vk does not have fat tails, it can create a fat tail in log population.
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Figure 7: The relationship between log population and vk.

Indeed, the distribution of vk that is estimated by the model does not have fat tails. The

kurtosis of the distribution is 3.06, only 0.06 more than a normal distribution. To contrast,

the kurtosis of the log population distribution is 4.32 (or excess kurtosis 1.32). So what that

means is that the model, with its heterogeneity of attachment, is able to generate the heavy

tails of the population distribution, without relying on heavy tails in the city utilities.

Without the heterogeneity in attachment (i.e. the constrained model discussed previ-

ously), the model is not able to generate the heavy tails on its own. The relationship

between log population and vk is much more linear, which I show in Appendix Figure A2.

And the kurtosis of the vk in the constrained model is 3.62.

5.6 Elasticities in the Model

One of the primary implications of the model is that changes in vk will have different propor-

tional effects on cities of different sizes. With the model, we can estimate these elasticities

directly. In Figure 5, I show the semi-elasticity of population with respect to vk, against

the city size. I also include a locally weighted scatterplot smoothing curve to emphasize the

increasing relationship. For the most populous cities, the semi-elasticity is about 50 percent
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larger than for the least populous city. Note that the average elasticity is not an interesting

statistic, since we normalized the mean of the log elasticity to be zero. This means that

identical policies that have identical welfare effects in different cities will induce different

population responses, by up to 50 percent. It might also help explain the slow decline of

cities because as they get smaller, their residents are less likely to move away in response to

continued shocks.
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Figure 8: The relationship between population semi-elasticity to vk and log population.

5.7 Relationship to Gibrat’s Law

The model I presented in this paper is not dynamic, but we can consider a simple extension

in which the vt’s evolve over time. Importantly because the relationship between vt and log

population is concave, there is no need for vk to be a random walk to generate Gibrat’s Law.

Rather, it can have a stationary distribution and still generate Gibrat’s Law. To see this in

continuous time,18 assume

v̇ = −Rv + AZ

where v̇ is the instantaneous rate of change of V , R is a persistence parameter, A governs

the variance of v, and Z is a Brownian motion. If R > 0, then vt has an ergodic distribution.

18For this exercise, I am considering movement in one city, and ignoring the spillovers from other cities.
I do not expect it to change the results.
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Because the population elasticity in increasing in v, the evolution of log p is

˙log p =

(
−Rϵ+

1

2

∂ϵ

∂v

)
v + ϵAZ

where ϵ is the local semi-elasticity of p to vk.

The extra term, which is due to Ito’s Lemma, might offset the persistence parameter for

the right combination of values, which could mean that log population growth is a random

walk. Hence, there is no contradiction between Gibrat’s Law and the thin-tailed vk that I

found in the model.

6 Conclusion

In this paper, I show that the city size distribution is in fact a fractal, and has a fat tail

at various subgeographies. I propose a toy model featuring heterogeneity in geographic

attachment. The toy model matches the fractal pattern exactly. Next, I show empirical

evidence in support of the model’s main mechanism: in general people are 10 percent more

likely to live in a city that is 10 percent bigger, but this elasticity increases in the distance

away from the person’s birthplace. Outside their home state, a person is 11.5 percent more

likely to live in a city that is 10 percent bigger. Building attachment heterogeneity into an

otherwise standard location choice model, I show that the model can match this empirical

fact, and also generate the fat tail of the city size pattern.
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Figure A1: The importance of city size, by distance, in the constrained model
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Figure A2: The relationship between log population and vk, in the constrained model.
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Figure A3: Share of the city that comes from out of the area

29


	Introduction
	The Fractal Pattern of City Sizes
	Challenges for existing location choice models

	Toy Model of the Fractal Pattern of City Sizes
	Empirical Evidence of Model's Mechanisms
	Data
	Results

	Incorporating the Mechanism into a Standard Model
	A discrete choice model with heterogeneous attachment
	Estimation Strategy
	Estimates
	Comparing the model to the empirical evidence
	An explanation of the Pareto tail
	Elasticities in the Model
	Relationship to Gibrat's Law

	Conclusion
	Appendix Figures

